
POSTER 2016, PRAGUE MAY 24 1

Offline Environment for Focused Crawler Evaluation

Tomáš Gogár

Dept. of Cybernetics , Czech Technical University, Karlovo namesti 13, 121 35 Prague, Czech Republic

gogartom@fel.cvut.cz

Abstract. Focused crawling is a method for automatic ex-
ploration of the World Wide Web focusing on regions, which
are relevant to a given topic. Since focused crawlers are
often used to collect data for vertical search engines, they
received special attention in research community. Unfortu-
nately, dynamic nature of the internet complicates fair com-
parisons of focused crawlers, because crawling experiments
are not repeatable in the longer term. Researchers try to mit-
igate the impact of a changing environment by running tested
crawlers simultaneously. However, this requirement makes
extensive comparisons almost impossible. In this work we
try to solve this issue by proposing a system for offline eval-
uation, which allows developers to consistently test their al-
gorithms on fixed subgraph of the internet. This subgraph
consists of 3.5 billion web pages and 128.7 billion links. Our
experiments with baseline focused crawlers showed that the
performance achieved in the offline environment correlates
with the performance achieved online. This suggests that the
proposed environment, which allows us to carry out repeat-
able experiments, can be used for focused crawler compar-
isons.

Keywords
Focused crawling, Topical crawling, Vertical search,
Evaluation, Common Crawl

1. Introduction
An increasing amount of data that are becoming avail-

able on the World Wide Web results in a growing need for
tools, which effectively organize and search information on
the internet. Generic search engines have become indispens-
able tools for browsing and searching the internet. These en-
gines gather data by using crawlers, which exploit the graph
structure of the web to automatically download billions of
web pages that are further processed by indexers.

Besides generic search engines (such as Google, Bing,
etc.), vertical search engines started to appear recently. Verti-
cal search engines are focused only on some specific domain
and they can benefit from such limited scope (usually they
can support domain-specific search parameters and therefore
provide results with greater precision).

On the other hand vertical search engines still need
some input data and therefore they also need to visit topic-
relevant web pages with a crawler. But since the relevant
web pages usually form only a negligible part of the inter-
net, we need a crawler, which avoids the regions of the web,
which are irrelevant with respect to the given domain. For
this reason focused crawlers received special attention in the
web search community in the last decade. These crawlers
prioritize the crawl frontier so that they discover as many
relevant pages as possible, while keeping the number of ir-
relevant pages minimized.

There are many focused crawling algorithms described
in literature (some of which are further described in Sec-
tion 2), each proposing different strategy for prioritizing the
crawl frontier. However, it is still unclear, which of these al-
gorithms is the best choice for some specific vertical search
engine, because there are no standard testing tasks, which
would allow systematical comparison.

Each crawling task is defined by topic definition, the
associated relevancy function and initial seed URLs. How-
ever, even if we precisely define the testing task, other au-
thors will not be able to compare their results in the longer
term, because crawlers operate above the internet and its na-
ture makes consistent comparison difficult. The main rea-
sons are:

• Internet is dynamic Content and structure of websites
changes very quickly, which prevents consistent repeti-
tion of experiments.

• Internet is huge Current generic search engines are ex-
pected to index about 50 billions of web pages. The
whole internet (including the non-indexable part often
referred to as the deep net) should in fact be much
larger, which makes it difficult to estimate the recall of
focused crawling algorithms.

Together with a lack of open-source implementations,
this results in a situation where most of the authors cannot
compare their results with crawlers, which were proposed a
few years ago and they compare with basic best-first-search
(BFS) solutions, which are easy to implement [12] [5].

In order to provide developers a way for comparing
their work, we propose an offline testing environment, which
use a large precrawled subgraph of the internet (induced by



2 T. GOGÁR, OFFLINE ENVIRONMENT FOR FOCUSED CRAWLER EVALUATION

3.5 billions web pages, which are interlinked by 128.7 bil-
lion links), which can be easily used for specifying repeat-
able crawling experiments. The main contributions of this
work are:

• Preprocessed data set for offline crawling We provide
a system for getting original web pages from a static
precrawled data set.

• Nutch plugins We provide plugins that can be used
together with well-established open-source crawler
Nutch, so that developers can easily switch between on-
line and offline crawling.

• Consistency experiments We show that crawling per-
formance measured on a fixed subgraph of the in-
ternet correlates with performance measurements ob-
tained online.

This paper is organized as follows: in Section 2 we
briefly summarize most influential focused crawling algo-
rithms and we discuss how they are compared. In Section 3
we describe our offline environment for crawler evaluation.
In Section 4 we compare its influence on focused crawlers
comparison. Section 6 then summarizes our results.

2. Related work
2.1. Crawling

The crawling process is usually initiated with a set
of starting URLs (referred to as seeds) and it explores the
web by repeatedly downloading content from newly discov-
ered URLs. Since the number of discovered URLs grows
exponentially with the number of downloaded web pages,
crawlers need to implement some selection policy in order
to decide, which document will be downloaded next. The
most simple strategy is breadth-first-search, however, it is
usually highly desirable to download the most relevant pages
as soon as possible and not waste resources for download-
ing some random fraction of the internet. Generic crawlers
usually prefer important URLs in the sense of PageRank
[2][1], while focused crawlers favor thematically relevant
web pages.

2.2. Relevancy functions

Focused crawlers usually employ one of the two ap-
proaches to estimate topical relevancy of a web page. The
first approach is based on cosine similarity between TF-IDF
vectors of a web page and a given topic-description vec-
tor. The topic-description vector can be extracted as a cen-
troid of sample documents or as a set of keywords provided
by human experts [5][12]. Cosine similarity can be easily

converted to binary decision by using a predefined similar-
ity threshold. The second approach uses a binary classifier
(Naive Bayes, SVM, etc.), which is trained on positive and
negative samples [5][8]. The drawback of the second method
is that we need a robust classifier for a highly unbalanced
classification problem.

2.3. Focused crawling

A focused crawler needs to prioritize the crawl frontier
in such a way that it can discover and explore relevant parts
of the web. Some approaches are briefly described below.
The first focused crawling algorithm Fish Search Algorithm
proposed by DeBra et al. in [7] imitates the school of fish,
which dies off if it cannot find food (here food means rele-
vant pages and school of fish is a direction of crawling). This
approach was than improved in the Shark Search Algorithm
by Hersovici et al.[9], where a more precise frontier prioriti-
zation was proposed. This approach as well as many others
uses best-first-search as an underlying strategy. It means that
it predicts the relevancy of unknown links and selects the
most promising first. This strategy is based on observation
that topically related web pages tend to be clustered close
to each other [6]. The same best-first-search strategy was
used in [5][4] with the difference that Naive-Bayes classifier
trained on ODP1 data was used.

More sophisticated approaches are able to follow ir-
relevant links in order to discover new clusters of relevant
pages. These algorithms often use backlinks provided by
generic search engines to create smaller subgraphs of rele-
vant pages, which lead to relevant clusters. Algorithms then
use various heuristics and language models, which can lead
the crawl over irrelevant nodes [8][10].

2.4. Crawler evaluation

The following paragraphs summarize performance
measures, which are usually used to measure effectiveness
of tested crawlers. These measures are often plotted as time
series, so that we can capture the dynamic behavior of the
tested algorithms. Measures estimating crawling precision
are:

• Harvest rate It is a percentage (or number) of relevant
pages fetched during the crawl. Whether the page is
relevant or not is classified by a binary classifier. In
order to capture the behavior of the tested crawler, it is
often depicted in a cumulative plot [5].

• Sliding window relevancy This measure captures the
average relevancy of fetched pages in different phases

1Open Directory Project (ODP) is an open categorized directory of web
pages, see http://www.dmoz.org/



POSTER 2016, PRAGUE MAY 24 3

of the crawl. Here the relevancy is a real value (usu-
ally between 0 and 1). In order to make results more
readable, it is usually plotted as the average relevancy
of sliding window. [8][12]

• Overall topic relevancy This measure can also be plot-
ted for every phase of the crawl, but unlike the previous
one, no sliding window is used and the average is com-
puted from all fetched pages [12].

Estimating recall is very difficult, because we simply
do not know the total number of relevant pages on the in-
ternet. Srinisavan et al.[12] propose to create small random
sample of relevant pages and estimate precision and recall on
the samples. However, this approach gives very tentative es-
timates, since the number of samples is negligible compared
to the size of the internet.

The recall measure is usually not needed for crawler
comparison because every tested crawler is limited to down-
load the same number of web pages and thus we can compare
them using precision measures. However, we have no idea
what portion of relevant web the crawlers have downloaded.

2.5. Crawler comparison

Using the measures described above, we can compare
different algorithms. However, internet is dynamic and the
underlying graph changes over time, so in the longer term
the experiments are not repeatable. Researchers are aware of
this issue and they solve it by running crawling algorithms si-
multaneously. However, this requirement makes exhaustive
comparisons very difficult, because we need functional im-
plementation of many algorithms. The problem is that most
algorithms described in literature lack open-source imple-
mentations, their parameters are not precisely described and
some of them require complex training with specific data sets
(which are not available). As a consequence, absolute ma-
jority of works on Focused crawling compare their results
with primitive baselines such as unfocused crawlers or very
simple best-first-search methods [7][9] (because these meth-
ods are well known, easy to implement and do not require
complex training).

This results in situations when:

• We do not know what is the state-of-art algorithm of
focused crawling.

• Parameter estimation and incremental tests of the same
crawling algorithm are complicated.

In this work we try to partially solve this problem
by providing a fixed subgraph of the internet that is large
enough, so that performance measured on the subgraph cor-
responds to the performance measured online. This ap-
proach brings many advantages such as repeatability of ex-
periments or possibility of estimating recall. However, it

Public suffix Absolute freq. Relative freq.
.com 2,068,437,976 0.558
.org 224,399,685 0.061
.net 201,192,588 0.054
.de 176,258,358 0.048

.co.uk 111,207,465 0.030
.ru 61,922,226 0.017
.nl 53,187,132 0.014
.pl 52,582,609 0.014

.info 48,803,468 0.013
.fr 47,291,759 0.013

Tab. 1. 10 most frequent public suffixes in 2012 crawl

should serve just for complementary testing and it should
never completely substitute online tests.

3. Offline Environment
3.1. Data set

As we mentioned above, we need a fixed set of web
pages that is as large as possible. For the purposes of this
work we have used data provided by Common Crawl2, par-
ticularly their crawl from 2012. Common Crawl is a non-
profit organization that provides a large repository of web
crawl data to the public. The whole dataset is hosted on
Amazon S3 as part of the Amazon Public Datasets program3,
so it can be downloaded for free using HTTP or S3.

Although Common Crawl finishes four large crawls ev-
ery year, we have chosen older crawl from 2012, because it
is the largest one it was crawled using breadth-first strategy4

[11].

This particular crawl consists of 210 terabytes of data,
which are divided into 856 thousands ARC files 5. ARC files
are compressed sets of web documents. The whole dataset
contains 3.83 billion documents, of which 3.53 billion are of
mime-type text/html [11]. Table 1 shows 10 most fre-
quent public suffixes in the crawl and we can see that more
than half of the documents comes from .com domains. The
structure of the web graph induced by the crawled pages was
thoroughly analyzed by Meusel et al. in [11]. In their work
they have identified 128.74 billion links between the crawled
pages, they computed that 48± 2.14% pairs of pages have a
connecting directed path, which is on average 12.84 ± 0.09
steps long. They have also identified a giant strongly con-
nected component that contains 51.3% of pages. The struc-
ture of the web is often depicted using the bow-tie model as
proposed in [3]. In Figure 1 you can see bow-tie model of
the 2012 crawl. The model consists of the following compo-
nents:

2http://commoncrawl.org/
3http://aws.amazon.com/public-data-sets/
4More recent crawls are based on large list of URLs provided by Blekko

company (Currently IBM Watson research group).
5http://archive.org/web/researcher/ArcFileFormat.php



4 T. GOGÁR, OFFLINE ENVIRONMENT FOR FOCUSED CRAWLER EVALUATION

• LSCC is the large strongly connected component (also
referred to as core)

• IN component contains non-core pages that can reach
the core via a directed path

• OUT contains non-core pages that are reachable from
the core

• TUBES are formed by the non-core pages that are
reachable from IN pages and that can reach OUT pages

• TENDRILS represents pages that are not listed above,
but are reachable from IN or that can reach OUT

• DISCONNECTED components represent discon-
nected subgraphs.

Although we have a pretty accurate picture of the struc-
ture of the Common Crawl 2012 web graph, we do not know
the true structure of the internet. Only the largest search en-
gine providers (such as Google, Microsoft, etc.) can accu-
rately approximate the true structure of the internet. How-
ever, our hypothesis is that the Common Crawl dataset is
large enough that we can use it for focused crawler evalua-
tion. This hypothesis is further examined in Section 4.

LSCC
51.28%

IN
31.96%

OUT
6.05%

TUBES
0.26%

TENDRILS
4.61%

DISCONNECTED
5.84%

Fig. 1. Bow-tie structure of Common Crawl 2012 (Data adopted
from [11]).

3.2. Data preprocessing

We have already mentioned that the original Common
Crawl dataset is stored in 856 thousand ARC files in Amazon
S3 store. ARC files consist of randomly concatenated ARC
records (each record represents a crawled document), which
are compressed with gzip. Concatenation of gzipped records
is still a legal gzip file. This separation of records allows us
to download only a particular document without the need to
download the whole ARC file (which takes about 100 MB).
However, if we want to download ARC record for particular

URL we need to know where it resides. Unfortunately, this
is not the case of the Common Crawl 2012 dataset where
the ARC records are stored randomly. Therefore, we need
to perform a linear search in order to find a web page. Such
an approach is highly inefficient and therefore we have pre-
processed the dataset and created an index of document po-
sitions. We used Amazon EC2 spot instances, went through
all ARC files and saved information needed to directly ac-
cess ARC records for particular URLs. This means that for
each URL we stored:

• Name of the ARC file where the document resides (it
consists of three parts: segment ID, file date and parti-
tion)

• The offset within the ARC file

• And the size of the compressed record

Since this index takes about 300 GB in uncompressed
text form, we have indexed it using a NoSQL database so
that we can quickly get the location information for each
URL from the dataset. Researchers and other developers can
download the preprocessed dataset from our webpage 6.

3.3. Architecture Overview

Beside crawl prioritization, robust crawlers need to
solve many other problems (such as detection of redirection
loops, crawler traps detection, DOM parsing, URL canoni-
calization, etc.). Therefore, we integrate our work into exist-
ing well-established Apache Nutch crawler7. Nutch crawler
is a production-ready crawler, which uses Apache Hadoop
environment, to enable large parallelized crawls. Its mod-
ular architecture allows us to adjust its behavior using cus-
tom plugins. The crawling lifecycle is depicted in Figure 2a.
URLs which should be fetched are passed from CrawlDB
to Fetcher, that is responsible for downloading documents,
these documents are then parsed, new links are extracted
and CrawlDB is updated. Fetcher is implemented as a plu-
gin, thus it can be replaced by our own implementation
that downloads documents from the Common Crawl dataset
(Figure 2b). Developers of crawling algorithms can then use
our plugin to easily switch between online and offline crawl-
ing.

The process of fetching document from Common
Crawl dataset is depicted in Figure 3. Our fetcher plugin
receives request for downloading a document at given URL
(1), it asks our database for its position in Amazon S3 (2),
then it downloads the compressed ARC file from S3(4), ex-
tracts its content and passes it back to the Nutch crawler(6).

6All datasets and Nutch plugins are available at
github.com/gogartom/Offline-crawling-environment

7http://nutch.apache.org/



POSTER 2016, PRAGUE MAY 24 5

When the crawler gets the page, it parses the content
and extracts all the links. However, some of the links point
to URLs, which are not in the dataset. If the crawler later
decides to fetch such missing URL, it will get a 404 - Not
Found response. Therefore such responses are much more
frequent during offline crawling.

Fig. 2. (a) Basic diagram of the Nutch lifecycle - by default the
Fetcher plugin downloads documents from internet. (b)
Our fetcher downloads documents from the Common-
crawl dataset. It is easily pluggable into the existing
Nutch infrastructure.

Fig. 3. Common Crawl fetcher: Process of fetching URL from
Amazon S3

4. Evaluation
4.1. Algorithms

After preprocessing the dataset and preparing the
Nutch fetcher, we examined the influence of offline crawling
on measures described in Section 2. For this purposes we
implemented two basic focused crawlers, Fish [7] and Shark
[9], into Nutch. We have chosen these algorithms for their
simplicity and because they are very often used as baselines

Topic Top vector words
Web APIs api, delete, string, update, type, object,

create, file, json, ...
Interior designers design, interior, bespoke, kitchen,

project, designer, ...
Bike shops bike, bicycle, cyclery, ride, shop, road,

mountain, frame, repair, ...
Cooking recipes, cooking, chicken, healthy,

food, chef, salad, cheese, ...
Hospitals health, medical, hospital, care, center,

patient, services, surgery, medicine..
Linux linux, command, shell, file, directory,

files, install, unix, ubuntu, server, ...
History museums museum, history, exhibit, historic,

tours, volunteer, visit, historical, ...
Photographers photography, photographer, portraits,

corporate, commercial, headshots, ...
Pet shelters shelter, animal, adoption, dogs, pet,

adopt, spay, neuter, volunteer, cats, ...
Universities campus, university, alumni, students,

faculty, undergraduate, research, ...

Tab. 2. Topics and their words.

in the literature. The third algorithm used in our experiments
is OPIC algorithm [1], which is a topically unfocused crawl-
ing strategy and it is used by default in Nutch.

4.2. Crawling tasks

We prepared 10 focused crawling tasks by defining
topic descriptions and seed pages. The topic description
is a TF-IDF vector, where term frequencies (TF) were ex-
tracted from 40 sample web pages and inverse-document-
frequencies (IDF) were computed from 370,000 randomly
crawled web pages (Table 2 shows topics and words with
the highest weight in the vector). In this work we used the
cosine distance between the topic vector and a page vector
as a measure of relevancy. The seeds URLs were selected
in such a way that all of them are reachable online and also
present in the offline dataset. We also tried to create crawling
tasks of different difficulty by starting some crawls closer to
target pages and some crawls further.

4.3. Experiments

After that, for all the predefined tasks and each algo-
rithm, we ran separate crawling experiments online and of-
fline. In every experiment we let the crawler to download
10 thousand pages, hence in total we have fetched 300,000
URLs from internet and the same number from S3. As we
have discussed in previous Section, when a crawler fetches
URL, which is not in the offline dataset, it gets a 404 - Not
Found response. Since it is not a fault of a crawler that the



6 T. GOGÁR, OFFLINE ENVIRONMENT FOR FOCUSED CRAWLER EVALUATION

0 2000 4000 6000 8000 10000

 Pages crawled 

0

1000

2000

3000

4000

5000

6000

N
u
m

b
e
r 

o
f 

fe
tc

h
e
d
 r

e
le

v
a
n
t 

p
a
g
e
s 

(c
o
si

n
e
 s

im
ila

ri
ty

 >
 0

.5
) 

 

opic

fish

shark

Fig. 4. Internet: Cumulative number of relevant pages
fetched during the crawls

0 2000 4000 6000 8000 10000

 Pages crawled 

0

1000

2000

3000

4000

5000

6000

N
u
m

b
e
r 

o
f 

fe
tc

h
e
d
 r

e
le

v
a
n
t 

p
a
g
e
s 

(c
o
si

n
e
 s

im
ila

ri
ty

 >
 0

.5
) 

 

opic

fish

shark

Fig. 5. Offline dataset: Cumulative number of relevant
pages fetched during the crawls

0 2000 4000 6000 8000

 Pages crawled 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
e
ra

g
e
 t

o
p
ic

 r
e
le

v
a
n
cy

 (
sl

id
in

g
 w

in
d
o
w

 5
0

0
 p

a
g
e
s)

 

opic

fish

shark

Fig. 6. Internet: Relevancy of fetched pages within a slid-
ing window (window size = 500)

0 2000 4000 6000 8000

 Pages crawled 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
A

v
e
ra

g
e
 t

o
p
ic

 r
e
le

v
a
n
cy

 (
sl

id
in

g
 w

in
d
o
w

 5
0

0
 p

a
g
e
s)

 
opic

fish

shark

Fig. 7. Offline dataset: Relevancy of fetched pages within
a sliding window (window size = 500)

0 2000 4000 6000 8000 10000

 Pages crawled 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
e
ra

g
e
 t

o
p
ic

 r
e
le

v
a
n
cy

 
 

opic

fish

shark

Fig. 8. Internet: Overall topic relevancy during the crawls

0 2000 4000 6000 8000 10000

 Pages crawled 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
e
ra

g
e
 t

o
p
ic

 r
e
le

v
a
n
cy

 
 

opic

fish

shark

Fig. 9. Offline dataset: Overall topic relevancy during the
crawls



POSTER 2016, PRAGUE MAY 24 7

0 2000 4000 6000 8000 10000

 Pages crawled 

0.0

0.5

1.0

1.5

2.0
S
h
a
rk

 i
m

p
ro

v
e
m

e
n
t 

 
S3: SHARK improvement over FISH

Internet: SHARK improvement over FISH

Fig. 10. Performance improvement of Shark search algorithm

URL is missing and we do not want to penalize it for that,
we ignore such dead links and we act as they did not exist
(i.e. the request is not counted to the download limit).

As in other works on focused crawling, we average the
results from all crawling tasks and plot these averaged mea-
sures as a time series, so that we capture the temporal behav-
ior of each crawling strategy. For both environments (online
and offline) we plotted the measures described in Section 2.
In Figures 4 and 5 we plotted the cumulative number of rele-
vant pages, in Figures 6 and 7 the relevancy within a sliding
window, and in Figures 8 and 9 the overall topic relevancy.

We can see that the results achieved in the offline en-
vironment are consistent with those measured online across
all three averaged measures. Both focused crawlers outper-
form the unfocused OPIC crawler and the Shark algorithm
performs better than the Fish crawler, such results are con-
sistent with those reported in literature. We note that the
same performance ranking was achieved in almost all of the
individual experiments, except History museums task, where
in offline environment Fish search algorithm outperformed
Shark crawler. However, this anomaly did not influenced the
average results8.

We also examined whether the performance improve-
ment of Shark algorithm over Fish algorithm is the same
across environments. Figure 10 shows improvement in
Overall topic relevancy measure plotted in time, we can see
that in both environments the improvement converges to the
same value (Shark performs 1.35 times better than Fish).

These results look promising and suggest that it should
be possible to use large offline graph for comparing focused
crawlers. However, it is important to note, that we have
tested only best-first-search strategies and that we do not
know the impact of smaller subgraph on strategies that can
tunnel through irrelevant web pages.

8All results are also available at
github.com/gogartom/Offline-crawling-environment

5. Future work
As we have mentioned above, we need to test more

crawling algorithms in our environment and compare their
results with performance measured online. Although there
are almost no public implementations of those algorithms,
we hope that our open-source environment will motivate
other researchers to participate in such comparison (which
can be carried out online and offline).

Since the whole Common Crawl dataset can be easily
processed by Map-Reduce we can use it to compute rele-
vancy of all 3.5 billions pages and then estimate recall of
tested algorithms (influence of seed selection strategy on re-
call can also be tested). We are also planning to carry out the
offline experiments directly in Amazon infrastructure, which
should reduce the demands on network traffic and therefore
speed up the testing process.

6. Conclusions
In this work we presented an offline environment for fo-

cused crawler evaluation. This effort to create an offline test-
ing environment is motivated by difficulties, which develop-
ers of focused crawlers face when comparing their works.
Dynamic nature of the internet force researchers to simul-
taneously run all algorithms, which they want to compare.
We try to solve this issue by proposing a system for crawl-
ing large fixed subgraph of the internet, where the algorithms
can be compared.

The environment uses an offline set of 3.5 billions of
web pages crawled by Common Crawl foundation. Those
pages can be directly accessed using our database, which
index positions of particular web documents (represented
by URL) within the dataset. We integrated this system
into a well-established Nutch crawler and experimented with
crawling such fixed subgraph. The first results show that if
we compare the performance of basic crawling strategies in
our offline environment, the results are consistent with the
same comparison, which was carried online. Although these
results for best-first-search strategies are promising, we still
need to create more consistency experiments with more so-
phisticated algorithms.

We note that this environment should not substitute on-
line tests completely, but it should be used for preliminary
comparisons, incremental testing or for other tasks that are
impossible on the internet, such as recall estimation.

All of our work, including Nutch plugins, position in-
dex and all results, is publicly available and we hope that it
will help to compare and improve future works on focused
crawling.



8 T. GOGÁR, OFFLINE ENVIRONMENT FOR FOCUSED CRAWLER EVALUATION

Acknowledgements
This research was financially supported by Department

of Cybernetics at Czech Technical University in Prague.
Computational resources were provided by the MetaCen-
trum under the program LM2010005 and the CERIT-SC un-
der the program Centre CERIT Scientific Cloud, part of the
Operational Program Research and Development for Inno-
vations, Reg. no. CZ.1.05/3.2.00/08.0144.

References
[1] ABITEBOUL, S., PREDA, M., AND COBENA, G. Adaptive on-line

page importance computation. In Proceedings of the 12th interna-
tional conference on World Wide Web, pages 280–290. ACM, 2003.

[2] BRIN, S. AND PAGE, L. Reprint of: The anatomy of a large-scale
hypertextual web search engine. Computer networks, 56(18):3825–
3833, 2012.

[3] BRODER, A., KUMAR, R., MAGHOUL, F., RAGHAVAN, P., RA-
JAGOPALAN, S., STATA, R., TOMKINS, A., AND WIENER, J. Graph
structure in the web. Computer networks, 33(1):309–320, 2000.

[4] CHAKRABARTI, S., PUNERA, K., AND SUBRAMANYAM, M. Accel-
erated focused crawling through online relevance feedback. In Pro-
ceedings of the 11th international conference on World Wide Web,
pages 148–159. ACM, 2002.

[5] CHAKRABARTI, S., VAN DEN BERG, M., AND DOM, B. Focused
crawling: a new approach to topic-specific web resource discovery.
Computer Networks, 31(11):1623–1640, 1999.

[6] DAVISON, B. D. Topical locality in the web. In Proceedings of the
23rd annual international ACM SIGIR conference on Research and
development in information retrieval, pages 272–279. ACM, 2000.

[7] DE BRA, P. AND POST, R. Searching for arbitrary information in the
www: The fish-search for mosaic. In WWW Conference. 1994.

[8] DILIGENTI, M., COETZEE, F., LAWRENCE, S., GILES, C. L.,
GORI, M., ET AL. Focused crawling using context graphs. In VLDB,
pages 527–534. 2000.

[9] HERSOVICI, M., JACOVI, M., MAAREK, Y. S., PELLEG, D.,
SHTALHAIM, M., AND UR, S. The shark-search algorithm. an ap-
plication: tailored web site mapping. Computer Networks and ISDN
Systems, 30(1):317–326, 1998.

[10] LIU, H. AND MILIOS, E. Probabilistic models for focused web crawl-
ing. Computational Intelligence, 28(3):289–328, 2012.

[11] MEUSEL, R., VIGNA, S., LEHMBERG, O., AND BIZER, C. Graph
structure in the web—revisited: a trick of the heavy tail. In Proceed-
ings of the companion publication of the 23rd international confer-
ence on World wide web companion, pages 427–432. International
World Wide Web Conferences Steering Committee, 2014.

[12] SRINIVASAN, P., MENCZER, F., AND PANT, G. A general evaluation
framework for topical crawlers. Information Retrieval, 8(3):417–447,
2005.

About Authors. . .

Tomáš GOGÁR was born in Jablonec nad Nisou, Czech
Republic. Tomáš received Masters degree in Artificial Intel-
ligence from the Czech Technical University in Prague. He
now continues his studies as PhD student focusing on NLP,
mainly on Information extraction for specific domains.


