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Abstract. Model-Based Testing is an automated test 

approach used for automated test generation, execution, 

and evaluation. For this purposes, it uses a formal model 

of system behavior. In this paper, an advanced variant of 

Petri net is presented as a tool for description of the 

systems under test. Petri nets have been selected for their 

graphical and executable nature and for the ability to 

describe parallel systems. For tests generation, Constraint 

programming is used, which is a software technology used 

for description and solving of combinatorial problems. 

This paper proposes a non-autonomous timed Petri net 

with discrete time, where inputs and outputs are modeled 

as global variables, as behavioral system model. Places in 

net represent a performance of the task, and a token 

movement represents a transition between the tasks. Test 

input generation is based on the Active token approach and 

the input values are retrospectively deducted by using 

Constraint programming. 
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1. Introduction 

At present the Model Based Testing (MBT) and test 

generation are still active research topics ([1]). In the past, 

a number of articles was written on the subject, and there is 

currently a wide range of MBT tools. However, only a 

small fraction of them uses Petri nets (PNs) as the model 

([2]). The MBT is not tightly defined concept and it has 

different meanings in various areas. Our group is mainly 

focused on the automotive industry, and there MBT is 

frequently considered a generation of test cases with 

oracles from a behavior model. In this approach, the MBT 

is a kind of black box testing, where an information about 

the tested system (SUT - system under test) come from an 

external behavior model. This means that there is no access 

to internals of SUT such as a source code. 

Petri nets were originally introduced by C. A. Petri 

[3], they are graphical modeling formalism for conceptual 

modeling of the flow of information in systems. Currently, 

there is a wide range of PNs variants, which extend their 

descriptive power. From our perspective, are intriguing 

Time-Arc Petri nets (TAPNs) [4] that are suitable for the 

specification of real-time systems. A limited set of basic 

constructs in PNs often leads to high model complexity in 

case of large systems. Therefore the Petri nets with discrete 

variables (PNDVs) [5] were chosen; they primarily add 

modeling convenience and compactness to PNs. PNDVs 

extend PNs with a set of finite global integer variables, 

used in pre-conditions and post-assignments on transitions.  

Constraint programming (CP) is a software 

technology for description and solving combinatorial 

problems (constraint satisfaction problems (CSPs)) using 

general search algorithms with heuristics. It is especially 

used in planning and scheduling areas. The basic idea 

behind CP is that users specify their constraints, and solver 

finds solutions, which should satisfy all of them. 

This paper describes the combination of PNs with the 

discrete variables along with CP approach for automatic 

generation of the input and output variables of the modeled 

system. They may serve as test inputs and the oracle for 

MBT. 

1.1 Recent work 

The connection between PNs and constraint-based 

approaches is not deeply investigated. The research is 

mainly focused on the Colored PNs (CPNs) and multi-

agent technology. In the paper [6], authors present the 

method for unfolding colored PNs using the constraint 

satisfaction approach to improve the unfolding efficiency. 

Paper [7] describes a research on multi-robot system 

planning based on a combination of multi-agent system and 

constraint satisfaction problem approach. Authors use 

specifically developed CPN models for a distributed 

constraint satisfaction algorithm. Paper [8] investigated 

High-Level PN formalisms that use the Constraint Logic 

Programming framework. Authors outline applications for 

hybrid and real-time systems, or flexible constraint 

satisfaction problems. Paper [9] introduces a Colored Petri 

net (CPN) model for a distributed constraint satisfaction 

algorithm to be applied in holonic multi-agent systems. In 

[10], a translation between timed Petri nets and CSP is 

demonstrated and the paper [11] presents an object-

oriented Petri net model with aspects of a CP language. 
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In the MBT, there exists a wide range of approaches 

for tests generation; many of them use timed automata, 

UML diagrams, etc. but only a small set of them uses PNs. 

The PNs are used in a simulation, verification, and 

validation of the designed system due to their graphical and 

executable nature. Often, they are also used for the 

modeling of parallel systems. Also, for the PN there are 

several basic approaches for the test generation; moreover, 

there are a plethora of different PNs variants. In this 

section, some examples are presented. Article [12] presents 

test sequence optimization method based on CPN and 

improved ant colony algorithm, which is used to generate 

the optimal sequences for China train operation and control 

system. Paper [13] shows usage of an advanced kind of Petri 

nets as a test model for Model-Based Statistical Testing. Paper 

[14] shows High level PN with constraints for Scenario-based 

Testing application.  

The combination of CP and PN with global variables 

in the MBT application has not been found, hence the 

proposed approach could be innovative. 

2. Control-Flow Petri nets 

In this section, Control-Flow Petri nets (CFPN) and 

its properties are described. In PNs, variables are typically 

modeled locally (CPNs). In the CPNs, tokens carry data 

structures (colors) and an assigned program code uses them 

to control when to fire transitions. Unlike CPNs, in the 

CFPNs tokens do not carry data, the data structures are 

global and finite, and only Integer and Boolean (modeled 

as Integer) variable types are allowed. As a basis for 

presented variant of the PNs, P-Free Petri Nets with 

Discrete Variables (P-Free PNDV from [5]) are used. In 

addition, the discrete time semantic is added to the CFPN 

in the form of Discrete Timed-Arc PN (DTAPN). This step 

is basically redundant because the authors of the article [5] 

show that DTAPN can be reduced to PNDV. The cause of 

this choice is to increase the clarity of PN for system 

modelers.  

CFPN is a PN extended with a finite set of integer 

variables, X = {x1, . . . ,xm}, and pre- and post-conditions on 

transitions. Meta-variables and syntactic categories are 

defined for expressions (Expr), conditions (Cond) and 

assignments (Assign). 
 

Definition 1:  The language describing expressions and 

conditions over X is 

Expression e ∈ Expr 

e ::= x | z | e ⊕ e, where x ∈ X, z ∈ ℤ, ⊕ ∈ {+,−, ∗} 

Conditions c ∈ Cond 

c ::= e ⨝ e | c ∨ c | c ∧ c | ¬c, where ⨝∈ {=, <,≤, >,≥, ≠} 

Assignments a ∈ Assign 

a ::= (x1 := e1, x2 := e2, . . . ,xm := em), where e1, . . . , em ∈ 

Expr 

Control-Flow Petri nets are defined as follows. 

Definition 2:  Control-Flow Petri net 

An CFPN is a 9-tuple (P, T, F, times, X, Range, Pre, Post, 

V) such that:  

P is a finite set of places, 

T is a finite set of transitions, where P ∩ T = ∅, 

F is flow function F ⊆ (P ×T) ∪ (T ×P), 

times maps intervals to input arcs  F|P×T →{[a, b] | a ∈ 

ℕ, b ∈ ℕ ∪ {∞}}, 

X X = {x1, . . . ,xm} is finite set of integer variables, 

Range is a function from the X to ℕ \ {0}; it assigns the 

maximum values for variables in X, 

Pre is a function from the set T to Cond; it maps 

transitions to pre-conditions, 

Post is a function from the set T to Assign; it maps 

transitions to post-assignments, 

V is a valuation; function from the X to ℕ, where 

V(x) ≤ Range(x) for all x ∈ X.   

Let N be a CFPN. A state on N is a 3-tuple S = (M, V, B), 

where M is a marking, V is a valuation and B is a finite 

multiset of natural numbers. That numbers correspond to 

the age of tokens at all places. The initial state of marked 

CFPN is a pair (N, S0), where S0 = (M0, V0, B0); M0 is initial 

marking and V0 corresponds to initial values of variables, 

in initial marking all tokens have age 0.  

Pre-condition c ∈ Cond is satisfied by a state (denoted 

S |= c), if by replacing the variables in c with the 

corresponding values from V and the formula evaluates to 

true. 

 An assignment a = (x1 := e1, . . . , xm := em) ∈ Assign 

evaluates to a new valuation V’ for given state S. It means 

that each expression e from a evaluates to a new value 

V ∈ ℤ (denoted V = eval(e,S)) for appropriate variables. 

More over each variable xi is limited by Range(xi) function, 

which specifies  the largest value xi can reach. 

Subsequently, it can be written V’= eval(a, S).  

Let S = (M, V, B) be a state on N and t ∈ T a 

transition, transition t is enabled if there exists a token 

x ∈ M(p) where x ∈ times(p, t), for all p ∈ •t and S |=  

Pre(t). If t is enabled in S, it can fire, which leads to a new 

state S’. From each input place (p ∈ •t), a single token place 

satisfying the age constraint is removed and new token of 

age 0 is added to every output place (p ∈ t•). The new state 

S’ = (M’, eval(Post(t), S), B’), where M’ new marking and 

B’ is a new multiset of tokens ages. 

3. System modeling 

Our approach to system modeling is inspired by 

Workflow - Petri nets (WFPN) [15]. The system is 

modeled using CFPNs as a set of tasks (activities) and 
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transitions between them. Token’s position represents a 

performance of the task and its movement represents a 

transition between the tasks. It was decided to model the 

activity as a place ([16]). This may at first seem 

counterintuitive because places often represent a static 

state. The execution of an activity is represented by a place 

and it is surrounded by two transitions. These transitions 

represent beginning and end of an activity. Similarly to the 

WFPN, the net contains only one token, but there is no 

need for the network to contain the start and end place. In 

the future, the concurrence of multiple parallel PNs is 

planned; they will be enhanced with synchronization 

mechanisms. The extending structures AND and XOR are 

also added in forms split and join (see [15]), for increased 

model transparency. These structures can be broken down 

into a form PNs and thus they bring no further issues. Next, 

more of supporting structures from WFPN as sub-processes 

or some routing patterns will be added. 

3.1 Task duration 

For modeling of the tasks duration, token locks are 

inserted into places that prevent tokens movement from the 

places for a specified period of time. This time is set fixed 

by the modeler, it represents the expected behavior of the 

user (inputs) or the duration of an internal task carried out 

by the system. In the future, the fixed values will be 

replaced with a stochastic approach. This solution was 

chosen for better transparency and it is based on the idea 

that the places correspond to tasks; additionally, this 

approach can be converted back to the timing arcs. 

3.2 Variables 

For the purpose of test inputs generation and oracle’s 

outputs, variables of the CFPN are divided into two groups.  

In the first group, there are the inputs variables.  They 

correspond to the input of the system and their actual 

values are generated by the CP (see section 4.2). In the 

second group, there are the state (output) variables, which 

can be used as a support for the oracle. Their actual values 

are computed from the initial values and the changes that 

are made using assignments (see section 4.3). 
 

Definition 3:  Variables 

Let Xinput and Xstate are finite sets of integer variables, where 

X = Xinput ∪ Xstate, and Xinput ∩ Xstate = ∅. 

4. Implementation 

The CFPNs are actually non-autonomous (reactive) PNs 

[17], they respond to inputs (events) from the external 

environment. Moreover, they are timed PNs with the clocks 

and a synchronous environment. That means CFPNs 

internal time is a sequence of discrete time steps (the basic 

clock strokes) and outside these time steps the system 

inputs are not valid. Model interpreter must guarantee a 

complete and coherent evolution of the model for every 

time step. In fact, for every time step, a cycle of transition 

firing is performed, bringing the CFPN from an initial 

stable state to a new stable one, according to the external 

inputs which are present at the same time step. 

In the classic non-autonomous PNs, the firing of some 

transition is conditioned by a combination of external 

inputs. In the proposed method, the process works vice 

versa. From the firings made during a time step, the method 

retrospectively deducts which inputs lead to the chosen 

course. This procedure is based on the Active token 

approach and the generation of variables values by using 

the CP. The implementation of CFPNs is developed in 

JAVA and Java Constraint Programming solver - JaCoP 

([18]) is used. 

4.1 Active token 

The proposed method is based on the principle of Active 

token; it is inspired by articles [19] and [20]. Common PNs 

are focused on transitions; when transition fires, it changes 

a token position and thus the marking of the net. From a 

token’s perspective, it is a passive process. In the proposed 

method, the token "manages" its movement through the net 

itself. It means that it selects an appropriate output arc from 

the current place. Appropriate output arcs are selected such 

that the firing of conditional transitions maintains the 

consistency of the input variables (see. the following 

subsection). The method of selection may be based on 

search algorithms that meet certain cover criteria, on a 

heuristic method or a stochastic approach can be used.  In 

future, the above-described approaches will be explored. 

4.2 Input generation 

Test inputs are generated based on the conditions that 

belong to transitions which are fired during a single time 

step. In the case of conditional transition firing, the 

appropriate condition is set as active. During the time step, 

only those transitions whose preconditions are not in 

contradiction with existing active conditions can be fired. 

This feature keeps the consistency of the input variables. At 

the end of the time step and after the stable state is reached, 

all active conditions are submitted to the constraint solver 

which calculates a solution, which contains a domain for 

each variable. The solver is able to select the values of 

variables from the resulting domains according to various 

criteria (the maximal, minimal, middle or random value of 

the domain). In this way, the values of the input variables 

are retrospectively determined for actual time step, and 

variables that are not included in the active conditions 

retain their values form the previous time step. 

4.3 Output generation 

In case of the CFPNs, only the values of the state (output) 

variables are changed by assignments. The values do not 

change along a simulation step ([21]), but they are changed 

at the end of time step after the input variables are 
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generated and all assignments are performed in the order 

they occurred during a time step.  

5. Conclusion and future work 

In this paper, the new tool that uses the Petri nets with 

discrete variables (CFPNs) in combination with a 

Constraint programming solver has been shown. The 

CFPNs are timed non-autonomous PNs with the clocks and 

a synchronous environment, which are used for system 

modeling. The paper outlines the possibility of using such 

tools for generating test in the MBT concept. Presented tool 

is based on the Active token approach and the generation of 

variables values by using the CP. In this approach, the 

system inputs are retrospectively deduced from the 

conditions belonging to the transitions that are fired during 

a time step, and the system outputs are calculated using 

assignments.  

In the future, we want to focus on the parallel run of 

multiple PNs, with an emphasis on synchronization and 

system modularity. Furthermore, the problem of the token 

routing for test cases generation seems to be interesting. 

Particularly, we would like to focus on metaheuristic 

methods like Ant Colony Optimization. Last but not least, 

the JaCoP provides a broad array of useful constraints, 

which could be incorporated into the CFPNs. 
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