
POSTER 2016, PRAGUE MAY 24 1

New Tool for Model-Based Testing using Petri nets and

Constraint Programming

Tomáš POSPÍŠIL
1

1
 Dept. of Measurement, Czech Technical University, Technická 2, 166 27 Praha, Czech Republic

pospito7@fel.cvut.cz

Abstract. Model-Based Testing is an automated test

approach used for automated test generation, execution,

and evaluation. For this purposes, it uses a formal model

of system behavior. In this paper, an advanced variant of

Petri net is presented as a tool for description of the

systems under test. Petri nets have been selected for their

graphical and executable nature and for the ability to

describe parallel systems. For tests generation, Constraint

programming is used, which is a software technology used

for description and solving of combinatorial problems.

This paper proposes a non-autonomous timed Petri net

with discrete time, where inputs and outputs are modeled

as global variables, as behavioral system model. Places in

net represent a performance of the task, and a token

movement represents a transition between the tasks. Test

input generation is based on the Active token approach and

the input values are retrospectively deducted by using

Constraint programming.

Keywords

Model-Based Testing, Petri nets, Test generation,

Constraint programming.

1. Introduction

At present the Model Based Testing (MBT) and test

generation are still active research topics ([1]). In the past,

a number of articles was written on the subject, and there is

currently a wide range of MBT tools. However, only a

small fraction of them uses Petri nets (PNs) as the model

([2]). The MBT is not tightly defined concept and it has

different meanings in various areas. Our group is mainly

focused on the automotive industry, and there MBT is

frequently considered a generation of test cases with

oracles from a behavior model. In this approach, the MBT

is a kind of black box testing, where an information about

the tested system (SUT - system under test) come from an

external behavior model. This means that there is no access

to internals of SUT such as a source code.

Petri nets were originally introduced by C. A. Petri

[3], they are graphical modeling formalism for conceptual

modeling of the flow of information in systems. Currently,

there is a wide range of PNs variants, which extend their

descriptive power. From our perspective, are intriguing

Time-Arc Petri nets (TAPNs) [4] that are suitable for the

specification of real-time systems. A limited set of basic

constructs in PNs often leads to high model complexity in

case of large systems. Therefore the Petri nets with discrete

variables (PNDVs) [5] were chosen; they primarily add

modeling convenience and compactness to PNs. PNDVs

extend PNs with a set of finite global integer variables,

used in pre-conditions and post-assignments on transitions.

Constraint programming (CP) is a software

technology for description and solving combinatorial

problems (constraint satisfaction problems (CSPs)) using

general search algorithms with heuristics. It is especially

used in planning and scheduling areas. The basic idea

behind CP is that users specify their constraints, and solver

finds solutions, which should satisfy all of them.

This paper describes the combination of PNs with the

discrete variables along with CP approach for automatic

generation of the input and output variables of the modeled

system. They may serve as test inputs and the oracle for

MBT.

1.1 Recent work

The connection between PNs and constraint-based

approaches is not deeply investigated. The research is

mainly focused on the Colored PNs (CPNs) and multi-

agent technology. In the paper [6], authors present the

method for unfolding colored PNs using the constraint

satisfaction approach to improve the unfolding efficiency.

Paper [7] describes a research on multi-robot system

planning based on a combination of multi-agent system and

constraint satisfaction problem approach. Authors use

specifically developed CPN models for a distributed

constraint satisfaction algorithm. Paper [8] investigated

High-Level PN formalisms that use the Constraint Logic

Programming framework. Authors outline applications for

hybrid and real-time systems, or flexible constraint

satisfaction problems. Paper [9] introduces a Colored Petri

net (CPN) model for a distributed constraint satisfaction

algorithm to be applied in holonic multi-agent systems. In

[10], a translation between timed Petri nets and CSP is

demonstrated and the paper [11] presents an object-

oriented Petri net model with aspects of a CP language.

2 T. POSPÍŠIL, NEW TOOL FOR MODEL-BASED TESTING USING PERTI NETS AND CONSTRAINT PROGRAMMING

In the MBT, there exists a wide range of approaches

for tests generation; many of them use timed automata,

UML diagrams, etc. but only a small set of them uses PNs.

The PNs are used in a simulation, verification, and

validation of the designed system due to their graphical and

executable nature. Often, they are also used for the

modeling of parallel systems. Also, for the PN there are

several basic approaches for the test generation; moreover,

there are a plethora of different PNs variants. In this

section, some examples are presented. Article [12] presents

test sequence optimization method based on CPN and

improved ant colony algorithm, which is used to generate

the optimal sequences for China train operation and control

system. Paper [13] shows usage of an advanced kind of Petri

nets as a test model for Model-Based Statistical Testing. Paper

[14] shows High level PN with constraints for Scenario-based

Testing application.

The combination of CP and PN with global variables

in the MBT application has not been found, hence the

proposed approach could be innovative.

2. Control-Flow Petri nets

In this section, Control-Flow Petri nets (CFPN) and

its properties are described. In PNs, variables are typically

modeled locally (CPNs). In the CPNs, tokens carry data

structures (colors) and an assigned program code uses them

to control when to fire transitions. Unlike CPNs, in the

CFPNs tokens do not carry data, the data structures are

global and finite, and only Integer and Boolean (modeled

as Integer) variable types are allowed. As a basis for

presented variant of the PNs, P-Free Petri Nets with

Discrete Variables (P-Free PNDV from [5]) are used. In

addition, the discrete time semantic is added to the CFPN

in the form of Discrete Timed-Arc PN (DTAPN). This step

is basically redundant because the authors of the article [5]

show that DTAPN can be reduced to PNDV. The cause of

this choice is to increase the clarity of PN for system

modelers.

CFPN is a PN extended with a finite set of integer

variables, X = {x1, . . . ,xm}, and pre- and post-conditions on

transitions. Meta-variables and syntactic categories are

defined for expressions (Expr), conditions (Cond) and

assignments (Assign).

Definition 1: The language describing expressions and

conditions over X is

Expression e ∈ Expr

e ::= x | z | e ⊕ e, where x ∈ X, z ∈ ℤ, ⊕ ∈ {+,−, ∗}

Conditions c ∈ Cond

c ::= e ⨝ e | c ∨ c | c ∧ c | ¬c, where ⨝∈ {=, <,≤, >,≥, ≠}

Assignments a ∈ Assign

a ::= (x1 := e1, x2 := e2, . . . ,xm := em), where e1, . . . , em ∈

Expr

Control-Flow Petri nets are defined as follows.

Definition 2: Control-Flow Petri net

An CFPN is a 9-tuple (P, T, F, times, X, Range, Pre, Post,

V) such that:

P is a finite set of places,

T is a finite set of transitions, where P ∩ T = ∅,

F is flow function F ⊆ (P ×T) ∪ (T ×P),

times maps intervals to input arcs F|P×T →{[a, b] | a ∈

ℕ, b ∈ ℕ ∪ {∞}},

X X = {x1, . . . ,xm} is finite set of integer variables,

Range is a function from the X to ℕ \ {0}; it assigns the

maximum values for variables in X,

Pre is a function from the set T to Cond; it maps

transitions to pre-conditions,

Post is a function from the set T to Assign; it maps

transitions to post-assignments,

V is a valuation; function from the X to ℕ, where

V(x) ≤ Range(x) for all x ∈ X.

Let N be a CFPN. A state on N is a 3-tuple S = (M, V, B),

where M is a marking, V is a valuation and B is a finite

multiset of natural numbers. That numbers correspond to

the age of tokens at all places. The initial state of marked

CFPN is a pair (N, S0), where S0 = (M0, V0, B0); M0 is initial

marking and V0 corresponds to initial values of variables,

in initial marking all tokens have age 0.

Pre-condition c ∈ Cond is satisfied by a state (denoted

S |= c), if by replacing the variables in c with the

corresponding values from V and the formula evaluates to

true.

 An assignment a = (x1 := e1, . . . , xm := em) ∈ Assign

evaluates to a new valuation V’ for given state S. It means

that each expression e from a evaluates to a new value

V ∈ ℤ (denoted V = eval(e,S)) for appropriate variables.

More over each variable xi is limited by Range(xi) function,

which specifies the largest value xi can reach.

Subsequently, it can be written V’= eval(a, S).

Let S = (M, V, B) be a state on N and t ∈ T a

transition, transition t is enabled if there exists a token

x ∈ M(p) where x ∈ times(p, t), for all p ∈ •t and S |=

Pre(t). If t is enabled in S, it can fire, which leads to a new

state S’. From each input place (p ∈ •t), a single token place

satisfying the age constraint is removed and new token of

age 0 is added to every output place (p ∈ t•). The new state

S’ = (M’, eval(Post(t), S), B’), where M’ new marking and

B’ is a new multiset of tokens ages.

3. System modeling

Our approach to system modeling is inspired by

Workflow - Petri nets (WFPN) [15]. The system is

modeled using CFPNs as a set of tasks (activities) and

POSTER 2016, PRAGUE MAY 24 3

transitions between them. Token’s position represents a

performance of the task and its movement represents a

transition between the tasks. It was decided to model the

activity as a place ([16]). This may at first seem

counterintuitive because places often represent a static

state. The execution of an activity is represented by a place

and it is surrounded by two transitions. These transitions

represent beginning and end of an activity. Similarly to the

WFPN, the net contains only one token, but there is no

need for the network to contain the start and end place. In

the future, the concurrence of multiple parallel PNs is

planned; they will be enhanced with synchronization

mechanisms. The extending structures AND and XOR are

also added in forms split and join (see [15]), for increased

model transparency. These structures can be broken down

into a form PNs and thus they bring no further issues. Next,

more of supporting structures from WFPN as sub-processes

or some routing patterns will be added.

3.1 Task duration

For modeling of the tasks duration, token locks are

inserted into places that prevent tokens movement from the

places for a specified period of time. This time is set fixed

by the modeler, it represents the expected behavior of the

user (inputs) or the duration of an internal task carried out

by the system. In the future, the fixed values will be

replaced with a stochastic approach. This solution was

chosen for better transparency and it is based on the idea

that the places correspond to tasks; additionally, this

approach can be converted back to the timing arcs.

3.2 Variables

For the purpose of test inputs generation and oracle’s

outputs, variables of the CFPN are divided into two groups.

In the first group, there are the inputs variables. They

correspond to the input of the system and their actual

values are generated by the CP (see section 4.2). In the

second group, there are the state (output) variables, which

can be used as a support for the oracle. Their actual values

are computed from the initial values and the changes that

are made using assignments (see section 4.3).

Definition 3: Variables

Let Xinput and Xstate are finite sets of integer variables, where

X = Xinput ∪ Xstate, and Xinput ∩ Xstate = ∅.

4. Implementation

The CFPNs are actually non-autonomous (reactive) PNs

[17], they respond to inputs (events) from the external

environment. Moreover, they are timed PNs with the clocks

and a synchronous environment. That means CFPNs

internal time is a sequence of discrete time steps (the basic

clock strokes) and outside these time steps the system

inputs are not valid. Model interpreter must guarantee a

complete and coherent evolution of the model for every

time step. In fact, for every time step, a cycle of transition

firing is performed, bringing the CFPN from an initial

stable state to a new stable one, according to the external

inputs which are present at the same time step.

In the classic non-autonomous PNs, the firing of some

transition is conditioned by a combination of external

inputs. In the proposed method, the process works vice

versa. From the firings made during a time step, the method

retrospectively deducts which inputs lead to the chosen

course. This procedure is based on the Active token

approach and the generation of variables values by using

the CP. The implementation of CFPNs is developed in

JAVA and Java Constraint Programming solver - JaCoP

([18]) is used.

4.1 Active token

The proposed method is based on the principle of Active

token; it is inspired by articles [19] and [20]. Common PNs

are focused on transitions; when transition fires, it changes

a token position and thus the marking of the net. From a

token’s perspective, it is a passive process. In the proposed

method, the token "manages" its movement through the net

itself. It means that it selects an appropriate output arc from

the current place. Appropriate output arcs are selected such

that the firing of conditional transitions maintains the

consistency of the input variables (see. the following

subsection). The method of selection may be based on

search algorithms that meet certain cover criteria, on a

heuristic method or a stochastic approach can be used. In

future, the above-described approaches will be explored.

4.2 Input generation

Test inputs are generated based on the conditions that

belong to transitions which are fired during a single time

step. In the case of conditional transition firing, the

appropriate condition is set as active. During the time step,

only those transitions whose preconditions are not in

contradiction with existing active conditions can be fired.

This feature keeps the consistency of the input variables. At

the end of the time step and after the stable state is reached,

all active conditions are submitted to the constraint solver

which calculates a solution, which contains a domain for

each variable. The solver is able to select the values of

variables from the resulting domains according to various

criteria (the maximal, minimal, middle or random value of

the domain). In this way, the values of the input variables

are retrospectively determined for actual time step, and

variables that are not included in the active conditions

retain their values form the previous time step.

4.3 Output generation

In case of the CFPNs, only the values of the state (output)

variables are changed by assignments. The values do not

change along a simulation step ([21]), but they are changed

at the end of time step after the input variables are

4 T. POSPÍŠIL, NEW TOOL FOR MODEL-BASED TESTING USING PERTI NETS AND CONSTRAINT PROGRAMMING

generated and all assignments are performed in the order

they occurred during a time step.

5. Conclusion and future work

In this paper, the new tool that uses the Petri nets with

discrete variables (CFPNs) in combination with a

Constraint programming solver has been shown. The

CFPNs are timed non-autonomous PNs with the clocks and

a synchronous environment, which are used for system

modeling. The paper outlines the possibility of using such

tools for generating test in the MBT concept. Presented tool

is based on the Active token approach and the generation of

variables values by using the CP. In this approach, the

system inputs are retrospectively deduced from the

conditions belonging to the transitions that are fired during

a time step, and the system outputs are calculated using

assignments.

In the future, we want to focus on the parallel run of

multiple PNs, with an emphasis on synchronization and

system modularity. Furthermore, the problem of the token

routing for test cases generation seems to be interesting.

Particularly, we would like to focus on metaheuristic

methods like Ant Colony Optimization. Last but not least,

the JaCoP provides a broad array of useful constraints,

which could be incorporated into the CFPNs.

Acknowledgements

The research described in the paper was supervised by

Assoc. Prof. J. Novák, FEE CTU in Prague and supported

by Grant Agency of the Czech Technical University in

Prague [SGS16/171/OHK3/2T/13], by by Technologická

Agentura ČR, grant no. TE01020020 - Centrum

kompetence automobilového průmyslu Josefa Božka.

References

[1] RÖSCH, S., ULEWICZ, S., PROVOST, J. and VOGEL-HEUSER,

B. Review of Model-Based Testing Approaches in Production
Automation and Adjacent Domains—Current Challenges and

Research Gaps in J. Softw. Eng. Appl., 2015, vol. 08, no. 09, p. 499–

519.

[2] MISTA: Model-based Integration and System Test Automation

http://cs.boisestate.edu/~dxu/research/MBT.html

[3] PETRI, C., Kommunikation mit automaten, Tech. rep. Bonn:
Rheinisch-Westfälisches Institut für Instrumentelle Mathematik an

der Universität Bonn, 1966.

[4] HANISCH, H.M. Analysis of place/transition nets with timed arcs
and its application to batch process control. in: Ajmone Marsan, M.

(ed.) Application and Theory of Petri Nets 1993, LNCS,1993, vol.

691, p. 282–299.

[5] JENSEN, J. F., NIELSEN, T. and ØSTERGAARD, L. K. Petri Nets

with Discrete Variables, Tech. rep. Aalborg Univ., 2012.

[6] LIU, F., HEINER, M., YANG, M. An efficient method for unfolding
colored Petri nets. In Proceedings of the Winter Simulation

Conference, 2012, p. 295.

[7] PANESCU, D., PASCAL, C., A constraint satisfaction approach for
planning of multi-robot systems. In: System Theory, Control and

Computing (ICSTCC), 2014, p. 157-162.

[8] BOUTET, F., MOTET, G., KUBEK, J. M. Use of constraints in Petri
nets and their novel applications, In Proc. IEEE Int. Conf. Syst. Man,

Cybern, 1998, vol. 1, pp. 32–37.

[9] PASCAL, C., PANESCU, D. A Petri net model for constraint
satisfaction application in holonic systems. In 2014 IEEE

International Conference on Automation, Quality and Testing,

Robotics (AQTR). IEEE, 2014. p. 1-6.

[10] MANCEL, C., et al. Relationships between Petri nets and constraint

graphs: application to manufacturing. In 15th IFAC world congress.
2002. p. 634.

[11] SANDERS, M. J. Constraint programming with object-oriented Petri

nets. In Systems, Man, and Cybernetics, 1998. 1998 IEEE
International Conference on. IEEE, 1998. p. 289-294.

[12] ZHENG, W., HU, N. W. Automated Test Sequence Optimization

Based on the Maze Algorithm and Ant Colony Algorithm. In
International Journal of Computers, Communications & Control,

2015, 10.4.

[13] BÖHR, F. Model based statistical testing of embedded systems. In:
Software Testing, Verification and Validation Workshops (ICSTW),

2011 IEEE Fourth International Conference on. IEEE, 2011. p. 18-

25.

[14] REZA, H., KERLIN, S. D. A model-based testing using scenarios

and constraints-based modular petri nets. In Information Technology:

New Generations (ITNG), 2011 Eighth International Conference on.
IEEE, 2011. p. 568-573.

[15] VAN DER AALST, W., VAN HEE, K. M. Workflow management:

models, methods, and systems. MIT press, 2004.

[16] ESHUIS, R., WIERINGA, R. Comparing Petri net and activity

diagram variants for workflow modelling–a quest for reactive Petri

nets. In Petri Net Technology for Communication-Based Systems.

Springer Berlin Heidelberg, 2003. p. 321-351.

[17] ALLA, H., DAVID, R. Continuous and hybrid Petri nets. Journal of

Circuits, Systems, and Computers, 1998, vol. 8, no. 1, p. 159-188.

[18] KUCHCINSKI, K., SZYMANEK, R. Jacop-java constraint
programming solver. In CP Solvers: Modeling, Applications,

Integration, and Standardization, co-located with the 19th
International Conference on Principles and Practice of Constraint

Programming. 2013.

[19] DAMMASCH, K., HORTON, G., Active Tokens for Modelling
Mental Health Care with Coloured Stochastic Petri Nets.

In Innovations in Information Technology, 2007. IIT'07. 4th

International Conference on. IEEE, 2007. p. 541-545.

[20] ATANASSOVA, V., ATANASSOV, K. Ant colony optimization

approach to tokens’ movement within generalized nets.

In: Numerical Methods and Applications. Springer Berlin
Heidelberg, 2010. p. 240-247.

[21] BARTKEVIČIUS, S., KRAGNYS, R., ŠARKAUSKAS, K. Global

Variables in Colored Petri Nets. Elektronika ir Elektrotechnika,
2015, vol 69, no. 5, p. 45-48.

About Authors

Tomáš POSPÍŠIL was born in 1986 in Prague, Czech

Republic. He received an Ing. degree (M.Sc. equivalent)

with a specialization in Cybernetics and Robotics from the

Department of Measurement, Faculty of Electrical

Engineering (FEE) Czech Technical University (CTU),

Prague, in 2012. His research interests include Petri nets

and Model-Based Testing.

http://cs.boisestate.edu/~dxu/research/MBT.html

