
POSTER 2016, PRAGUE MAY 24 1

Optimized Framework for Model-Based Testing of

Automotive Distributed Systems

Lukáš KREJČÍ1,

1 Dept. of Measurement, Czech Technical University, Technická 2, 166 27 Praha, Czech Republic

krejclu6@fel.cvut.cz

Abstract. The paper presents an optimized framework

for model-based testing of automotive distributed system.

The proposed framework, envisioned for integration into

existing, currently developed model-based testing tool,

utilizes several test sequences generation strategies

combined with automated testing priority assignment

in order to reduce the testing procedure’s mean time

to error-detection.

It is shown, that the presented framework’s advantages, such

as the reduction of the testing time, as well as low

requirements for the testing operators’ insight, are valuable

for the automotive distributed systems testing process.

Keywords

Model-based testing, automotive systems, timed

automata, UPPAAL, classifiers.

1. Introduction

The Aim of this paper is to present new optimized

framework for model-based testing of automotive

distributed systems.

At the presence, the testing process used in the

automotive industry is composed from three distinct parts.

The compulsory standard tests, the specialized test-cases and

integration testing. The compulsory standard tests are given

by various international, national or organization safety

standards and hence are unavoidable. The prearranged

specialized test-cases are often based on the organization

know-how and are therefore desirable, as they can uncover

specific corner-case faults. Purpose of the integration testing

is to test the automotive system as a whole in order

to discover possible errors caused by distributed systems

interconnection or improper user interaction. Currently,

the integration testing is usually done manually by testing

operators and thus can be automated using the model-based

testing principles.

 The model-based testing is a popular approach

of automated testing, which utilizes model of a tested system

in order to generate a testing sequence or drive the testing

procedure in real time. Since the automotive systems are

reactive and real-time, it was necessary to develop a suitable

testing tool.

2. Background

The development of the model-based testing tool,

called TASysTest, is described in [1]. Since automotive

systems are real-time, this tool utilizes a modeling language

based on the systems of timed automata, developed

by UPPAAL team [3].

UPPAAL team used existing theory of timed automata,

described in [2], with discrete variables and synchronization

capabilities. As defined by UPPAAL, timed automata

systems are a powerful tool for the model-checking

verification of real-time systems. Such a language allows

to describe the modeled system as a set of Finite State

Machines bound by system of transition labels and automata

variables and constants. The timed automata systems are

stored as XML-formatted files with the standard schema

defined by UPPAAL team.

Despite existence of various test sequence generation

strategies, the TASysTest tools is currently only able

to generate pseudo-random test sequences. Since this

approach can be suboptimal in several cases, new optimized

testing framework for this tool was designed in order

to reduce the mean time required for the error-detection

3. Optimization Approaches

There are several promising approaches

for the reduction of the error-detection mean time required

by the model-based testing procedure. The optimization

techniques can operate on the model level and their purpose

is a reduction of model’s state space. Alternative approaches

operate directly on the sequence generation level.

3.1 Model-Level Optimizations

The test sequence generation procedure time

complexity is undoubtedly dependent on the size of tested

system model. Hence, the procedure can be possibly

optimized by the model size reduction.

2 L. KREJČÍ, OPTIMIZED FRAMEWORK FOR MODEL-BASED TESTING OF AUTOMOTIVE DISTRIBUTED SYSTEMS

As the model typically describes a collection of parallel

processes in the modelled system, it is common that some

of them are identical. Thus, if the rest of the system is

independent on the number of these identical processes and

if these processes do not access any shared variable, they can

be, apart from one, omitted from the procedure.

Nevertheless, this reduction is not feasible, if these processes

execute distinct operations on the transitions, as such

processes might control different hardware devices and

therefore ignoring them could possibly result in the error

detection failure.

Furthermore, it is also possible to reduce the total size

of model’s state space by a technique called Partial Order

Reduction, described i.e. in [4]. This reduction is frequently

used in the model-checking formal verification and is based

upon fact that in some cases the order of executed operations

is irrelevant with respect to the verified property. Fig. 1

shows a simple example of such reduction.

Fig. 1. The Partial Order Reduction example.

State B is in this example omitted from the reduced state

space as the order of transitions X and Y, as well as state B

itself, does not influence the verified property. However, in

the case of model-testing, where no explicit property is being

verified, usage of this approach could be problematic.

If tested system contains a fault, which occurrence is

invoked only by exact order of transitions, such reduction

could result in detection failure. Because the overhead

required to bypass described flaw would significantly

increase overall time-complexity, this approach is not

viable.

Since the model state-space reduction techniques can

cause error detection failure or require significant overhead,

the proposed framework does not utilize them and use

sequence generation approaches as a more viable alternative.

3.2 Sequence Generation Approaches

As already mentioned, the test sequence generation can

be driven according to various strategies. Examples

of popular approaches are pseudo-random sequence

generation, state or transition coverage maximization and

selective prioritization. The proposed framework uses all

of these approaches.

Since the developed tool is envisioned for testing of

the automotive comfort systems, the inputs of the typical

system under test are continuously affected by human users.

Thus, the pseudo-random sequence generation is sufficient

for simulation of random user-generated inputs and for that

reason it is currently utilized by the tool. The proposed

framework uses this strategy as a foundation and extends it

by combining it with additional approaches.

As its name implies, the state (resp. transition)

coverage maximization is a strategy that generates

a sequence with complete state (resp. transition) coverage

according to the system model. As the framework is

designed for the automotive systems, where maximal state

(resp. transition) coverage is appropriate due to the safety

reasons, utilization of this strategy is highly desirable.

However, this strategy is particularly hard to implement, as

the state coverage maximization problem is equivalent

to the Hamiltonian Path problem, which is NP-complete.

In order to maintain reasonably low time complexity, this

approach can be realized as an approximation heuristic.

Because the resulting sequence should be pseudo-random,

one of potential solutions is based on the modification

of the transition probabilities used in the sequence

generation in a way that lowers the selection probability

of the previously selected states.

Last strategy used by the framework is the selective

prioritization. In several scenarios, parts of tested system

(i.e. states and transitions) may be labeled, possibly by

the testing operator or model designer, with a priority

of interest. If such labeling is available, it is used by this

particular strategy in order to generate a test sequence

with increased coverage of the prioritized parts of the tested

system. This can be straightforwardly achieved

by the Nearest-Neighbor heuristics. Though, the generated

sequence should be pseudo-random. Consequently, one

of possible solutions is based on the weighted random walk

on the state space graph using the priority labels as edge

weights.

Considering the scenario with the automotive systems,

the states and transitions labeled by a high-priority labels

will be in typical case such states and transitions, which

failure would result in fatal safety violation or would

negatively affect the overall user experience. Moreover,

having the correct high-priority labels on states and

transitions with higher error-rate can significantly reduce

the time required for error detection.

Still, proper manual configuration of priorities of such

states and transitions requires a significant insight

to the tested system. Hence, the proposed framework

encases a procedure called Automated Pinpointing that is

able to automatically assign priorities to the states and

transitions of the tested system according to the information

given stored in the model.

3.3 Automated Pinpointing

As declared earlier, the Automated Pinpointing is

a procedure, which obtains the priority labels for

the selective prioritization strategy automatically according

to the model. In order to accomplish this, this procedure

POSTER 2016, PRAGUE MAY 24 3

utilizes several classifiers in various forms (i.e. artificial

neural network). However, regardless of the used classifiers

types, each of them requires some supplemental information

about the modeled system. With the aim of having these

supplementary facts available, the modeling language

utilized by the developed tool needs to be extended with

an ability to store the state, transition and template extra-

data.

The extra-data are stored in the comment sections

of the state, transitions and template and for example can

provide following additional:

 Safety index indicating, how severe failure can

the state, transition or template functionality cause.

 User experience index indicating, how severe user

experience impairment can the state, transition

or template functionality cause.

 Vulnerability index indicating, how failure-

vulnerable is the state, transition or template

functionality.

 Functionalities correlation indicating, how

intertwined are distinct functionalities of distinct

states, transitions and templates.

The rationale behind the safety, user experience and

vulnerability indexes is simple. The higher each index is,

the more worthwhile is to test related state, transition

or template promptly.

The functionalities correlation extra-data can be

especially useful in scenario, where several functionalities

are linked together (i.e. through usage of the same

codebase). For example, let functionalities A and B share

90 % of the codebase. Then, if transitions linked

to the functionality A are faulty and thus have high priority

of testing, then the transitions linked to the functionality B

should also have high priority of testing, as the error

incidence in the source code of functionality A would

probably invoke similar error in functionality B.

As already mentioned, the proposed framework is able

to use multiple classifiers at once. These classifiers are

separated into two following categories:

 Context-insensitive classifiers that work on the level

of separate states and transitions. That means these

classifiers take a single state or transition extra-data as

an input.

 Context-sensitive classifiers that work on the level

of a template or even whole model. That means these

classifiers take all extra-data from the template

or entire model, as well as the template or model

structure as an input.

Results obtained from different classifiers are

compared and their potential incongruence is reported

to the testing operator, as it may indicate possible extra-data

misconfiguration or occurrence of unspecific anomalous

conditions within model.

The training data necessary for the proper operation

of the context-insensitive classifiers can be effortlessly

obtained by running multiple complete tests and labelling

the model manually by the testing operator afterwards.

From the other hand, acquisition of the training data

for the context-sensitive classifiers can be problematic,

since each sample from the training set must necessarily

contain an entire template or model structure. Thus, each

template or model has to have its own training data sets.

The framework makes use of the outputs of all utilized

classifiers in order to label the model with priority labels.

As already revealed, possible incongruence in the classifiers

outputs is used to detect inconclusive results caused

by the wrong extra-data or anomalous conditions and is

therefore reported to the testing operator.

4. Framework Structure

The proposed framework utilizes mentioned principles

in a form of a pipelined processing. Fig. 2 depicts its

structure.

Fig. 2. The framework pipeline structure.

The framework’s pipeline consists of following parts:

 The Model Parser, which loads the model from its

XML-formatted file.

 The Automated Pinpointing Analyzer, which encases

the previously described procedure of Automated

Pinpointing. This block takes parsed model as an input

and outputs the model enriched with priority and

incongruence labels.

 The Line-Up Generator, which encases the test

sequence generation strategies described in previous

sections. This block takes enriched model as an input

and outputs a script for the testing environment and

the control outputs for the Test Processor (if it is

present in the chain).

 The Test Engine, which is included in the chain only

optionally (i.e. for the online testing). This block takes

the control inputs and directly executes given

operations on the tested system according to them.

Described pipelined modular architecture allows

seamless integration of the proposed framework into

the developed tool.

4 L. KREJČÍ, OPTIMIZED FRAMEWORK FOR MODEL-BASED TESTING OF AUTOMOTIVE DISTRIBUTED SYSTEMS

5. Conclusions and Future Work

In this paper, the optimized framework for the model-

testing of an automotive distributed system is presented. The

described framework combines the pseudo-random test

sequences generation with a state and transition coverage

maximization and selective prioritization strategies in order

to generate such testing sequences, which reduce the

required mean time of the error-detection. In addition, the

presented framework utilizes a procedure for automatic

priorities assignment, which is able to use information

provided by the model for pinpointing the parts of the model,

which are most worthwhile to be tested. Furthermore, the

framework’s pipelined structure allowing easy integration

into testing systems was presented.

At the presence, the framework is being implemented

into TASysTest tool that currently utilizes only simple

pseudo-random test sequences generation. As this tool uses

the modeling language based on the timed automata, the

presented framework uses it as well. However, it is possible

to adapt the framework for other graphical modeling

languages.

The future research will primarily consist of finding the

most suitable way of the extra-data and training data storage.

Afterwards, the research will continue by analysis of various

classifiers and sequence generation heuristics in order to find

the most feasible ones, as well as the most reasonable

training strategies. Additional research will be focused

on the issues of automatic obtainment of the model extra-

data.

The presented framework, as well as entire TASysTest

tool will be tested, thanks to the co-operation with Škoda

Auto a. s., on the real automotive systems developed and

manufactured by this company.

Acknowledgements

Research described in the paper was supervised by doc.

Ing. Jiří Novák, PhD. and supported by the Czech Student

Grant Agency under grant no. SGS16/171/OHK3/2T/13.

References

[1] GRUS, T. Implementation of Integration Testing Test Cases

Generation Tool. Master’s Thesis, CTU in Prague, FEE, 2014.

[2] ALUR, R., DILL, D. L. Theory of timed automata. Theoretical

Computer Science 126, 1994, p. 183-235.

[3] BEHRMANN, G., DAVID, A., LARSEN, K. G. A tutorial on
UPPAAL. In proceedings of the 4th International School on Formal

Methods for the Design of Computer, Communication, and Software

Systems (SFM-RT'04).

[4] CLARKE, E. M., GRUMBERG, O., MINEA, M., PELED, D. State

space reduction using partial order techniques. 1998.

About Authors...

Lukáš KREJČÍ was born in Prague in 1990. He received

his bachelor's and master's degree from the CTU in Prague,

FEE in 2012 and 2014 respectively. Since February 2015, he

has been studying the branch of doctoral studies called

Measurement and Instrumentation at the Department of

Measurement on CTU in Prague, FEE.

