POSTER 2016, PRAGUE MAY 24

Optimized Framework for Model-Based Testing of
Automotive Distributed Systems

Lukdas KREJCI,

! Dept. of Measurement, Czech Technical University, Technicka 2, 166 27 Praha, Czech Republic

krejclu6@fel.cvut.cz

Abstract. The paper presents an optimized framework
for model-based testing of automotive distributed system.

The proposed framework, envisioned for integration into
existing, currently developed model-based testing tool,
utilizes several test sequences generation strategies
combined with automated testing priority assignment
in order to reduce the testing procedure’s mean time
to error-detection.

It is shown, that the presented framework’s advantages, such
as the reduction of the testing time, as well as low
requirements for the testing operators’ insight, are valuable
for the automotive distributed systems testing process.

Keywords

Model-based testing, automotive timed

automata, UPPAAL, classifiers.

systems,

1. Introduction

The Aim of this paper is to present new optimized
framework for model-based testing of automotive
distributed systems.

At the presence, the testing process used in the
automotive industry is composed from three distinct parts.
The compulsory standard tests, the specialized test-cases and
integration testing. The compulsory standard tests are given
by various international, national or organization safety
standards and hence are unavoidable. The prearranged
specialized test-cases are often based on the organization
know-how and are therefore desirable, as they can uncover
specific corner-case faults. Purpose of the integration testing
is to test the automotive system as a whole in order
to discover possible errors caused by distributed systems
interconnection or improper user interaction. Currently,
the integration testing is usually done manually by testing
operators and thus can be automated using the model-based
testing principles.

The model-based testing is a popular approach
of automated testing, which utilizes model of a tested system
in order to generate a testing sequence or drive the testing
procedure in real time. Since the automotive systems are

reactive and real-time, it was necessary to develop a suitable
testing tool.

2. Background

The development of the model-based testing tool,
called TASysTest, is described in [1]. Since automotive
systems are real-time, this tool utilizes a modeling language
based on the systems of timed automata, developed
by UPPAAL team [3].

UPPAAL team used existing theory of timed automata,
described in [2], with discrete variables and synchronization
capabilities. As defined by UPPAAL, timed automata
systems are a powerful tool for the model-checking
verification of real-time systems. Such a language allows
to describe the modeled system as a set of Finite State
Machines bound by system of transition labels and automata
variables and constants. The timed automata systems are
stored as XML-formatted files with the standard schema
defined by UPPAAL team.

Despite existence of various test sequence generation
strategies, the TASysTest tools is currently only able
to generate pseudo-random test sequences. Since this
approach can be suboptimal in several cases, new optimized
testing framework for this tool was designed in order
to reduce the mean time required for the error-detection

3. Optimization Approaches

There are several promising approaches
for the reduction of the error-detection mean time required
by the model-based testing procedure. The optimization
techniques can operate on the model level and their purpose
is a reduction of model’s state space. Alternative approaches
operate directly on the sequence generation level.

3.1 Model-Level Optimizations

The test sequence generation procedure time
complexity is undoubtedly dependent on the size of tested
system model. Hence, the procedure can be possibly
optimized by the model size reduction.

2 L. KREJCI, OPTIMIZED FRAMEWORK FOR MODEL-BASED TESTING OF AUTOMOTIVE DISTRIBUTED SYSTEMS

As the model typically describes a collection of parallel
processes in the modelled system, it is common that some
of them are identical. Thus, if the rest of the system is
independent on the number of these identical processes and
if these processes do not access any shared variable, they can
be, apart from one, omitted from the procedure.
Nevertheless, this reduction is not feasible, if these processes
execute distinct operations on the transitions, as such
processes might control different hardware devices and
therefore ignoring them could possibly result in the error
detection failure.

Furthermore, it is also possible to reduce the total size
of model’s state space by a technique called Partial Order
Reduction, described i.e. in [4]. This reduction is frequently
used in the model-checking formal verification and is based
upon fact that in some cases the order of executed operations
is irrelevant with respect to the verified property. Fig. 1
shows a simple example of such reduction.

State A State A
Y
State B P State C
X
State D State D

Fig. 1. The Partial Order Reduction example.

State B is in this example omitted from the reduced state
space as the order of transitions X and Y, as well as state B
itself, does not influence the verified property. However, in
the case of model-testing, where no explicit property is being
verified, usage of this approach could be problematic.
If tested system contains a fault, which occurrence is
invoked only by exact order of transitions, such reduction
could result in detection failure. Because the overhead
required to bypass described flaw would significantly
increase overall time-complexity, this approach is not
viable.

Since the model state-space reduction techniques can
cause error detection failure or require significant overhead,
the proposed framework does not utilize them and use
sequence generation approaches as a more viable alternative.

3.2 Sequence Generation Approaches

As already mentioned, the test sequence generation can
be driven according to various strategies. Examples
of popular approaches are pseudo-random sequence
generation, state or transition coverage maximization and
selective prioritization. The proposed framework uses all
of these approaches.

Since the developed tool is envisioned for testing of
the automotive comfort systems, the inputs of the typical

system under test are continuously affected by human users.
Thus, the pseudo-random sequence generation is sufficient
for simulation of random user-generated inputs and for that
reason it is currently utilized by the tool. The proposed
framework uses this strategy as a foundation and extends it
by combining it with additional approaches.

As its name implies, the state (resp. transition)
coverage maximization is a strategy that generates
a sequence with complete state (resp. transition) coverage
according to the system model. As the framework is
designed for the automotive systems, where maximal state
(resp. transition) coverage is appropriate due to the safety
reasons, utilization of this strategy is highly desirable.
However, this strategy is particularly hard to implement, as
the state coverage maximization problem is equivalent
to the Hamiltonian Path problem, which is NP-complete.
In order to maintain reasonably low time complexity, this
approach can be realized as an approximation heuristic.
Because the resulting sequence should be pseudo-random,
one of potential solutions is based on the modification
of the transition probabilities used in the sequence
generation in a way that lowers the selection probability
of the previously selected states.

Last strategy used by the framework is the selective
prioritization. In several scenarios, parts of tested system
(i.e. states and transitions) may be labeled, possibly by
the testing operator or model designer, with a priority
of interest. If such labeling is available, it is used by this
particular strategy in order to generate a test sequence
with increased coverage of the prioritized parts of the tested
system. This can be straightforwardly achieved
by the Nearest-Neighbor heuristics. Though, the generated
sequence should be pseudo-random. Consequently, one
of possible solutions is based on the weighted random walk
on the state space graph using the priority labels as edge
weights.

Considering the scenario with the automotive systems,
the states and transitions labeled by a high-priority labels
will be in typical case such states and transitions, which
failure would result in fatal safety violation or would
negatively affect the overall user experience. Moreover,
having the correct high-priority labels on states and
transitions with higher error-rate can significantly reduce
the time required for error detection.

Still, proper manual configuration of priorities of such
states and transitions requires a significant insight
to the tested system. Hence, the proposed framework
encases a procedure called Automated Pinpointing that is
able to automatically assign priorities to the states and
transitions of the tested system according to the information
given stored in the model.

3.3 Automated Pinpointing

As declared earlier, the Automated Pinpointing is
aprocedure, which obtains the priority labels for
the selective prioritization strategy automatically according
to the model. In order to accomplish this, this procedure

POSTER 2016, PRAGUE MAY 24

utilizes several classifiers in various forms (i.e. artificial
neural network). However, regardless of the used classifiers
types, each of them requires some supplemental information
about the modeled system. With the aim of having these
supplementary facts available, the modeling language
utilized by the developed tool needs to be extended with
an ability to store the state, transition and template extra-
data.

The extra-data are stored in the comment sections
of the state, transitions and template and for example can
provide following additional:

e Safety index indicating, how severe failure can
the state, transition or template functionality cause.

e User experience index indicating, how severe user
experience impairment can the state, transition
or template functionality cause.

e Vulnerability index indicating, how failure-
vulnerable is the state, transition or template
functionality.

e Functionalities correlation indicating, = how
intertwined are distinct functionalities of distinct
states, transitions and templates.

The rationale behind the safety, user experience and
vulnerability indexes is simple. The higher each index is,
the more worthwhile is to test related state, transition
or template promptly.

The functionalities correlation extra-data can be
especially useful in scenario, where several functionalities
are linked together (i.e. through usage of the same
codebase). For example, let functionalities A and B share
90 % of the codebase. Then, if transitions linked
to the functionality A are faulty and thus have high priority
of testing, then the transitions linked to the functionality B
should also have high priority of testing, as the error
incidence in the source code of functionality A would
probably invoke similar error in functionality B.

As already mentioned, the proposed framework is able
to use multiple classifiers at once. These classifiers are
separated into two following categories:

e Context-insensitive classifiers that work on the level
of separate states and transitions. That means these
classifiers take a single state or transition extra-data as
an input.

e Context-sensitive classifiers that work on the level
of a template or even whole model. That means these
classifiers take all extra-data from the template
or entire model, as well as the template or model
structure as an input.

Results obtained from different classifiers are
compared and their potential incongruence is reported
to the testing operator, as it may indicate possible extra-data
misconfiguration or occurrence of unspecific anomalous
conditions within model.

The training data necessary for the proper operation
of the context-insensitive classifiers can be effortlessly
obtained by running multiple complete tests and labelling
the model manually by the testing operator afterwards.
Fromthe other hand, acquisition of the training data
for the context-sensitive classifiers can be problematic,
since each sample from the training set must necessarily
contain an entire template or model structure. Thus, each
template or model has to have its own training data sets.

The framework makes use of the outputs of all utilized
classifiers in order to label the model with priority labels.
As already revealed, possible incongruence in the classifiers
outputs is used to detect inconclusive results caused
by the wrong extra-data or anomalous conditions and is
therefore reported to the testing operator.

4. Framework Structure

The proposed framework utilizes mentioned principles
in a form of a pipelined processing. Fig. 2 depicts its
structure.

Training data

Model Automated Test Contral
Modelm—{ OC&l ! Pinpointing = . Oft"m:fs
ausch Analyzer 9

Test sequence

Fig. 2. The framework pipeline structure.

The framework’s pipeline consists of following parts:

e The Model Parser, which loads the model from its
XML-formatted file.

e The Automated Pinpointing Analyzer, which encases
the previously described procedure of Automated
Pinpointing. This block takes parsed model as an input
and outputs the model enriched with priority and
incongruence labels.

e The Line-Up Generator, which encases the test
sequence generation strategies described in previous
sections. This block takes enriched model as an input
and outputs a script for the testing environment and
the control outputs for the Test Processor (if it is
present in the chain).

e The Test Engine, which is included in the chain only
optionally (i.e. for the online testing). This block takes
the control inputs and directly executes given
operations on the tested system according to them.

Described pipelined modular architecture allows
seamless integration of the proposed framework into
the developed tool.

4 L. KREJCI, OPTIMIZED FRAMEWORK FOR MODEL-BASED TESTING OF AUTOMOTIVE DISTRIBUTED SYSTEMS

5. Conclusions and Future Work

In this paper, the optimized framework for the model-
testing of an automotive distributed system is presented. The
described framework combines the pseudo-random test
sequences generation with a state and transition coverage
maximization and selective prioritization strategies in order
to generate such testing sequences, which reduce the
required mean time of the error-detection. In addition, the
presented framework utilizes a procedure for automatic
priorities assignment, which is able to use information
provided by the model for pinpointing the parts of the model,
which are most worthwhile to be tested. Furthermore, the
framework’s pipelined structure allowing easy integration
into testing systems was presented.

At the presence, the framework is being implemented
into TASysTest tool that currently utilizes only simple
pseudo-random test sequences generation. As this tool uses
the modeling language based on the timed automata, the
presented framework uses it as well. However, it is possible
to adapt the framework for other graphical modeling
languages.

The future research will primarily consist of finding the
most suitable way of the extra-data and training data storage.
Afterwards, the research will continue by analysis of various
classifiers and sequence generation heuristics in order to find
the most feasible ones, as well as the most reasonable
training strategies. Additional research will be focused
on the issues of automatic obtainment of the model extra-
data.

The presented framework, as well as entire TASysTest
tool will be tested, thanks to the co-operation with Skoda
Auto a. s., on the real automotive systems developed and
manufactured by this company.

Acknowledgements

Research described in the paper was supervised by doc.
Ing. Jifi Novak, PhD. and supported by the Czech Student
Grant Agency under grant no. SGS16/171/OHK3/2T/13.

References

[11 GRUS, T. Implementation of Integration Testing Test Cases
Generation Tool. Master’s Thesis, CTU in Prague, FEE, 2014.

[2] ALUR, R., DILL, D. L. Theory of timed automata. Theoretical
Computer Science 126, 1994, p. 183-235.

[3] BEHRMANN, G., DAVID, A.,, LARSEN, K. G. A tutorial on
UPPAAL. In proceedings of the 4th International School on Formal
Methods for the Design of Computer, Communication, and Software
Systems (SFM-RT'04).

[4] CLARKE, E. M., GRUMBERG, O., MINEA, M., PELED, D. State
space reduction using partial order techniques. 1998.

About Authors...

Luka$ KREJCI was born in Prague in 1990. He received
his bachelor's and master's degree from the CTU in Prague,
FEE in 2012 and 2014 respectively. Since February 2015, he
has been studying the branch of doctoral studies called
Measurement and Instrumentation at the Department of
Measurement on CTU in Prague, FEE.

