POSTER 2016, PRAGUE MAY 24

Context-aware Input Validation in Information Systems

Karel CEMUS

Dept. of Computer Science, Czech Technical University, Technicka 2, 166 27 Praha, Czech Republic

cemuskar@fel.cvut.cz

Abstract. Enterprise Information Systems (EISs) main-
tain corporation data with the respect to business processes.
These business processes constraint operations by precon-
ditions and post-conditions. Unfortunately, contemporary
approaches fail to effectively express and reuse these con-
ditions and tend towards high restatements throughout the
entire system.

Alternative Aspect-Driven Design Approach (ADDA) fo-
cuses on advanced system decomposition and encapsulation.
Its automated transformation simplifies information distri-
bution into various parts of the system. This paper elabo-
rates the transformation of the above-mentioned conditions
into distributed context-aware user interfaces. This results
with significant reductions to the error-prone process, and
leveraged development and maintenance efforts.

Keywords

Enterprise Information Systems, Aspect-Oriented Pro-
gramming, Input Validation, Business Rules.

1. Introduction

Every Enterprise Information System facilitates two
major features. First, it maintains large amount of data with
the respect to the business domain constraints, and second, it
exposes API and a User Interface (UI) to access and modify
them. Both these are heavily constrained by the business do-
main, i.e., the processes, their preconditions, post-conditions
and model constraints. Furthermore, all conditions may vary
in time, differ per user’s role and context, or simply change
during the system evolution.

Unfortunately, contemporary design approaches lack
the support of business rules' transformation and reuse [4].
Instead, they repeat conditions throughout the whole sys-
tem, from the Ul through business services to the persistence
layer [4]. Consequently, a single condition gets repeated
many times in the system, which makes its maintenance very
difficult. All changes are very error-prone as we have to lo-

By business rules we understand all preconditions and post-conditions
of all processes and their operations identified in the business domain as
well as all model constraints [3].

cate all occurrences and update all places [6]. Things get
more complicated when we consider the possible complex-
ity of business rules and their possible dependency on time,
user role, IP address, etc.

Alternative Aspect-driven design approach [2] focuses
on extraction of business rules tangled throughout the whole
system and their isolation in the single focal point called
knowledge base. This registry aggregates all conditions in
the system and groups them up into business contexts* [3].
Then the approach proposes the automated rules transfor-
mation into various target components such as the persis-
tence layer and business services to deliver easily maintain-
able EIS without repetitions of the business rules. Unfortu-
nately, the ADDA concept has not been fully demonstrated
yet, there are many possible targets of the transformation [2]
but exist only several proofs of the concept.

In this paper, we elaborate the ability of ADDA
to transform business rules represented in the platform-
independent knowledge base into the context-aware input
validation in forms in the UI to avoid manual rules repeti-
tion and simplify the maintenance. The paper is structured
as follows. The next chapter, Section 2, presents the issue
of repetition of validation rules in contemporary approaches,
while Section 3 browse through the related work. Section 4
discusses the ADDA concept. In Section 5, we introduce
our implementation of the concept in the UI form validation.
Section 6 demonstrates the simple example. Finally, we con-
clude the paper in Section 7.

2. Business Rules in EIS

EISs usually separate the logic into three layers [8]:
1) the persistence layer facilitating access into the persistent
storage, 2) the application layer implementing the business
logic, and finally 3) the presentation layer exposing API and
UI enabling users and other systems accessing the data.

This architecture organizes the business logic into busi-
ness operations. Each operation is a method in the middle
layer and represents a step in a business process, i.e., such
an operation has some business significance [4, 8]. We know

2By the business context we understand a set of preconditions and post-
conditions defining the business operation, i.e., the step in the business pro-
cess with some business value.

2 K. CEMUS, CONTEXT-AWARE INPUT VALIDATION IN INFORMATION SYSTEMS

o]
b
D
g User triggers Ul rendering
Il an action
=
% hides components
= . . user is not eligible
a Client-side b g
) . A 0 see
> input validation
‘g Server-side
L input validation
5 Security filter
? (drops fields)
2 Business logic
[oX
o execution
<
g Data constraints
(1] . .
> verification Data retrieval
é (instances filter)
= Sync. with the
S persistent storage
Legend: [Applies preconditions Model integrity constraints Applies post-conditions

Fig. 1. Business operation execution

that every business operation, i.e., a step in a process, is re-
stricted by some preconditions such as user’s role, IP ad-
dress, state of the application, and some model constraints.
It also defines some post-conditions, i.e., what must be true
when the operation finishes successfully. For example, con-
sider the retrieval of my opened issues in an issue tracking
system. This operation defines post-conditions such as re-
turned issues are assigned to me and opened.

Every EIS is usually business-operation centric, i.e.,
every request invokes one business operation. The execu-
tion of the request is shown in Fig. 1. As we see, first, user
initiates some action and operation’s preconditions apply to
validate input data before they are submitted to the server.
Then, they apply again to verify data at the entrance to the
application layer to ensure data and context’s validity in case
of some inconsistencies in UI. After the business logic exe-
cutes, we verify model constraints again before saving the
data to avoid their corruption in the persistent storage. Next,
post-conditions apply. First, we restrict returned data to drop
instances not matching the post-condition criteria, and then
drop instances and fields the user is not eligible to see. Fi-
nally, when we render Ul, we apply preconditions again to
hide components and action buttons for which the user does
not fulfill security requirements.

Business rules are used in many places throughout the
whole system, which makes them difficult to encapsulate in
a single place [11]. Furthermore, especially preconditions
are used multiple times, and usually in multiple technolo-

gies3, which makes their maintenance even harder. Unfortu-
nately, neither contemporary technologies nor design focus
on business rules reuse and force developers to repeat the
rules manually instead. Keeping all places synchronized is
very error-prone and requires significant efforts [9].

3. Related Work

The authors in [11] discuss concerns tangling in enter-
prise systems. Among concerns they identify widgets, local-
ization, and business rules as an independent concerns dif-
ficult to describe next to each other. Instead, they observe
that contemporary systems tend to tangle concerns together,
which enforces their repetition and complicates the mainte-
nance. As solution, in [12] they propose an alternative ap-
proach decomposing the concerns and automatically stati-
cally mixing them into resulting UI. This approach suffers
from its inability to efficiently address context-dependent
changes in business rules.

Difficulty of business rules representation in EISs is
evaluated in [6]. It compares several techniques to represent
the rules to ease the maintenance and concludes with the Vis-
itor design pattern as the most efficient solution for the ap-
plication layer. The proposed approach reminds the object-
based approach considered in [4]. However, this solution is
not more efficient than simple JSR 303: Bean Validation [1]
with RichFaces* framework [4] transforming business rules
annotating the model into UI. Either way, none of these cov-
ers context-aware rules, and the object-based approach does
not allow rules transformation into Ul Finally, both these
tend to be outdated as the modern Uls are more self-standing
instead of being strongly dependent on the server-side.

The complexity of Uls is discussed in [5]. The authors
also describe various independent but tangled concerns in Ul
including business rules but their proposed approach does
not efficiently consider them. They fallback to JSR 303 with
all their benefits and limitations. However, in [7] they ex-
tend their proposal to support distributed concerns delivery,
which enables the modern self-standing Uls with reuse of
server-side concerns description.

Alternatively, the authors in [15, 16] propose focusing
on business rules, and maintain them on various levels of
abstraction to have them maintainable by both developers
and domain experts. They suggest maintaining them using
CASE Tools and then referencing them from the code to al-
low their automated transformation.

Finally, Model-driven development represents another
approach avoiding business rules repetition [14]. It suggests
maintaining various models on a few levels of abstraction
and having them automatically transformed into more spe-

3We validate user’s input in the client-side technology, then verify it in
the server-side technology, and finally we might declare database integrity
constraints to protect our data storage.

“http://richfaces jboss.org/

POSTER 2016, PRAGUE MAY 24

cific levels, which facilitates the information reuse. Unfor-
tunately, this approach has difficult maintenance as it is tai-
lored for the forward transformation. Any change performed
to the code is difficult to propagate back into the model. Nev-
ertheless, this approach does not conflict with the previous
approaches, thus it is possible to use them together to mini-
mize manual code duplication and information restatement.

4. Aspect-driven Design Approach

All approaches discussed in the previous chapter suffer
from some limitations such as inability to express context-
dependent business rules. Alternative ADDA introduced
in [2] focuses on overcoming this issue. This approach gen-
eralizes several cross-cutting concerns such as those iden-
tified in [11], and applies Aspect-Oriented Programming
(AOP) [13] to consider them as aspects.

Such thinking enables us describing all those concerns
including business rules independently in the most efficient
way, and storing them in a single focal point. Then we use
techniques for code generation and transformation rules to
weave all isolated aspects into proper join points to deliver
the resulting system. Such decomposition and aspects def-
inition significantly simplifies the system development and
maintenance efforts as every piece of information is captured
only once and is automatically propagated throughout the
whole system at runtime.

The concept considers domain-specific languages
(DSLs) [10] to be the most efficient method for aspects de-
scription. While it enables very efficient syntax and compre-
hensibility, it also introduces the significantly steep learning
curve. Nevertheless, the concern representation is platform
independent and requires various aspect weaver implemen-
tations to produce resulting components.

Implementation of aspect weavers enables both richer
pointcuts and richer aspects. Both may consider contextual
information such as user’s identity, privileges, IP address,
current application state, server load, etc., and use them to
select proper join points to weave in. The only assumption
is runtime weaving and efficient concerns transformation.

Although, ADDA introduces significant project over-
head as uses multiple DSLs and requires various aspect
weaver implementations, it shows very promising results [4].
Use of DSLs enables responsibility delegation to the domain
experts, and a single focal point ease development and main-
tenance. Finally, simple description of concerns in isolation
reduces their error-proneness and simplifies their testability.

5. Context-aware Input Validation

Business rules participate in various aspect weavers.
For example, one weaver produces a context-aware data re-

trieval service [3], and the other produces validation logic
in the application layer [2]. This chapter introduces the as-
pect weaver transforming the platform-independent business
rules into the context aware input validation in forms in Ul

Modern EIS uses distributed UI with the single-page
client-side application exposing the system to end users.
Such a client is backed by the server-side application pro-
viding required data [7]. The client application let end users
to browse and fill data in forms consisting of inputs mapped
into the model fields. Every field and the model itself is con-
strained by several business rules depending on the current
business context, i.e., set of rules attached to the current busi-
ness operation. Moreover, business rules may vary based on
time, user’s privileges, and the application state. In conse-
quence, validation rules are complex, and it is error-prone to
maintain them in many places, especially when a single field
may occur in multiple views, forms, layouts, etc. [5].

ADDA concept uses AOP to decompose the concerns
and weave them back together. To follow this paradigm,
we identify AOP components (aspects, join points, pointcuts
and advices) in the Ul input validation are reuse the business
rules concern from the server-side.

By an aspect we consider the business rules. This cross-
cutting concern is tangled in the system and often repeated.
Our previous work shows the ability to extract it and orga-
nize the rules into business contexts efficiently described in
some DSL such as JBoss Drools. For input validation, we
consider only preconditions from the business context. Post-
conditions are ignored because they apply in the different
part of the process®, as we show in Fig. 1.

Join points are places where to possibly weave in the con-
cern. In this case, we identify several places:

(D during form preparation before it is rendered to check
security preconditions on fields (read/write access)

@ on change and blur input events to validate input data

(3 on changing event to provide hints, e.g., how many
characters left when maximal length is defined

@ on form submit event to validate the form including
form-wide rules

Advise is functionality to weave in. In case of validation,
it is verification of a condition. For every form to render,
developers address the business context, and we extract pre-
conditions from it. The advise is a transformed single pre-
condition, i.e., verification, if the condition is satisfied.

Pointcuts select subsets of join points, where to apply the
particular advise. We use pointcuts based on the type of a
business rule. For example, min and max value restrictions
we bind to (2), while OR conditions to 4). Furthermore,
when you apply the length restriction into the long text area,

Shttp://www.drools.org/

6Note: Model constraints are supposed to be independent on a particular
operation and the current context as they define data integrity constraints.
In consequence, they are not part of the context.

4 K. CEMUS, CONTEXT-AWARE INPUT VALIDATION IN INFORMATION SYSTEMS

Server

Persistence E {l

Layer

? Business Context
Registry -

Application E Client

Layer

1 T Web Browser {l
{l Single-page {I
REST API application
o u

Fig. 2. Application architecture in the deployment diagram

we bind the validation to both ?) and (3) to hint the number
of remaining characters.

Weaving is being perform when the form is being ren-
dered. First, we fetch the provided business context from
the server, and then extract preconditions from it. Finally,
we transform each precondition into an executable advice,
assign the proper pointcut based on the condition type, and
weave it into selected join points. In results, the form be-
haves exactly as if the developer would create it manually,
although the business rules are automatically reused.

Context-awareness of this ADDA implementation is
provided in two ways. First, declared business contexts may
accept any contextual information the server provides [2]
such as user’s identity, which is reflected in the transformed
validation rules. Contextual data are fetched from the server.
Second, our pointcuts consider the current UI context they
weave into. For example, when the precondition restricts the
length and the UI widget is a fextarea, then it weaves also
into (3) to inform a user about characters left.

The ADDA implementation assumes a bit specific
server-side architecture [2], as we show in Fig. 2. The persis-
tence and the application layers are hidden behind the REST
API exposing data and operations to clients. The presen-
tation layer is divided into two components: 1) the REST
API and 2) the single-page application, which is the contem-
porary approach to modern Uls. Besides this common lay-
out, there is the business contexts registry providing business
rules organized into contexts around business operations. It
exposes them in the platform-independent format, and lets
clients to transform them.

6. Input Validation Example

We demonstrate our weaver implementation on a small
issue tracking system. The system maintains Projects con-
sisting of Issues. Each issue maintains its Comments. Each
User stands in one of three roles: a user, a developer, or an
administrator, and is assigned to zero or more projects and
zero or more issues. Users report, resolve, and comment is-
sues, create and archive projects.

In this application, we consider various types of pre-
conditions. For example: min/max value, min/max length

Lis. 1. Business context: Report an Issue

rule "Report Issue" when Issue (

title != null && title.length > 10,
title == null || title.length < 200,
title matches "“[a-zA-Z0-9]%S$"

description == null || description.length < 1000,

priority >= 1 && priority <= 3,

type != null
) end

Issue Report

Title

Title must be between 10 and 200 characters long

Description

There are 9 characters left.
Priority

Low
Report Issue

Fig. 3. Preview of the Issue tracking application

restriction, required, and value pattern. We also consider
conjunctions and disjunctions of preconditions. To support
security checks, we compare user’s roles against list of per-
mitted roles. In practice, the business context may look like
in Lis. 1. This example uses JBoss Drools framework and
shows preconditions of Report Issue operation. It considers
length of the title and the description, checks priority range
and verifies the issue defines its type.

Having the business context, we annotate the HTML
form to let the weaver know, where the model fields are.
Lis. 2 shows issue reporting form. Notice the context name
in the form tag; otherwise it is just regular form. Filed names
are extracted from input names and aspect weaving is trig-
gered on page load. The resulting Ul is shown in Fig. 3.

There are no validation rules in HTML or in Javascript.
They are fully fetched from the server and transformed from
the platform-independent format into Javascript and bind to
the events, which successfully shows another target for busi-
ness rules transformation in terms of ADDA. However, there
still remain some challenges. First, although we are able
to reuse business rules, alternative approaches [5, 12] show,
it is also possible to generate forms themselves from inde-
pendently described concerns such as a model, localization,
widgets, and a layout. Improvement of the weaver by sup-

POSTER 2016, PRAGUE MAY 24

Lis. 2. Form with meta-data to report an issue

<form data-business-context="Report Issue'">

<label for="title">Title:</label>
<input type="text" name="title" id="title"/>

<label for="description">Title:</label>
<textarea name="description" id="description">
</textarea>

<label for="priority">Title:</label>
<select name="priority" id="priority">
<option value="1">Low</option>
<option value="2">Medium</option>
<option value="3">High</option>
</select>

<button type="submit">Report the issue</button>
</form>

port of more concerns would be significant benefit to both
development and maintenance efforts as well as to testa-
bility. Second, example in Lis. 1 uses JBoss Drools DSL,
which is not much convenient for this particular use [2]. In-
stead, we suggest tailoring own DSL better fitting the needs.
That would allow simpler expressing of business contexts in
more declarative and readable syntax, with indirect impact
on transformation simplification.

7. Conclusion

Every EIS maintains data with the respect to the pro-
cesses in his business domain. These processes define
many business rules consisting of preconditions and post-
conditions of every operation. Unfortunately, neither con-
temporary design approaches nor technologies focus on
business rules, their efficient maintenance and reuse.

In this paper, we introduce another component for busi-
ness rules reuse using ADDA focusing on concerns sepa-
ration including business rules and their automatic runtime
weaving. In terms of AOP and this approach, we define
context-aware input validation in forms in distributed user
interface.

Our example shows a proof of the concept and demon-
strates the ability to fully reuse validation constraint pro-
vided by a server as business context in the platform-
independent format. This enables us using efficient DSL
and delegate responsibilities to domain experts, while it au-
tomatically propagates the rules throughout the whole sys-
tem. Together with the previous work, we are able to reuse
the rules in the application and the presentation layer for the
input validation, and in the persistence layer for output re-
striction, without their no manual repetition. Furthermore,
the approach weaves them in runtime, which enables consid-
ering current user’s and application’s context. Contrary, this
design approach introduces significant initial project over-
head because it uses several domain-specific languages and
requires complex aspect weavers.

In future work, we will extend this implementation by
support of additional concerns such as model, widgets, and
layouts to deliver comprehensive example of multi-platform
context-aware forms in distributed user interface.

Acknowledgments

The research was supervised by Tomas Cerny from the
Czech Technical University in Prague. This research was
also supported by the Grant Agency of the Czech Technical
University in Prague, grant No. SGS14/198/OHK3/3T/13.

References

[1] BERNARD, E., AND PETERSON, S. Jsr 303: Bean validation. Bean
Validation Expert Group, March (2009).

[2] CeEMuUS, K., AND CERNY, T. Aspect-driven design of informa-
tion systems. In SOFSEM 2014: Theory and Practice of Computer
Science, LNCS 8327. Springer International Publishing Switzerland,
2014, pp. 174-186.

[3] CeEmus, K., CERNY, T., AND DONAHOO, M. J. Automated busi-
ness rules transformation into a persistence layer. Procedia Computer
Science 62 (2015), 312-318.

[4] CEMus, K., CERNY, T., AND DONAHOO, M. J. Evaluation of ap-
proaches to business rules maintenance in enterprise information sys-
tems. In Proceedings of the 2015 Conference on research in adaptive
and convergent systems (2015), ACM, pp. 324-329.

[5] CERNY, T., CEMUS, K., DONAHOO, M. J., AND SONG, E. Aspect-
driven, data-reflective and context-aware user interfaces design. ACM
SIGAPP Applied Computing Review 13,4 (2013), 53-66.

[6] CERNY, T., AND DONAHOO, M. J. How to reduce costs of business
logic maintenance. In Computer Science and Automation Engineering
(CSAE), 2011 IEEE International Conference on (2011), vol. 1, IEEE,
pp. 77-82.

[71 CERNY, T., MACIK, M., DONAHOO, M. J., AND JANOUSEK, J.
On distributed concern delivery in user interface design. Computer
Science and Information Systems 12,2 (2015), 655-681.

[8]1 FOWLER, M. Patterns of enterprise application architecture.
Addison-Wesley Longman Publishing Co., Inc., 2002.

[9] FOWLER, M. Refactoring: improving the design of existing code.
Pearson Education India, 2002.

[10] FOWLER, M. Domain-specific languages. Pearson Education, 2010.

[11] KENNARD, R., EDMONDS, E., AND LEANEY, J. Separation anxiety:
stresses of developing a modern day separable user interface. In Hu-
man System Interactions, 2009. HSI’09. 2nd Conference on (2009),
IEEE, pp. 228-235.

[12] KENNARD, R., AND STEELE, R. Application of software mining to
automatic user interface generation, 2008.

[13] KiczALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C.,
LOPES, C., LOINGTIER, J.-M., AND IRWIN, J. Aspect-oriented pro-
gramming. Springer, 1997.

[14] KLEPPE, A. G., WARMER, J. B., AND BAST, W. MDA explained,
the model driven architecture: Practice and promise. Addison-Wesley
Professional, 2003.

[15] MORGAN, T. Business rules and information systems: aligning IT
with business goals. Addison-Wesley Professional, 2002.

[16] THEODOULIDIS, B., AND YOUDEOWEI, A. Business rules: To-
wards effective information systems development. Business Informa-
tion Systems—uncertain futures (2000), 313-321.

