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Abstract. Model predictive control is an optimization
based methodology, which is well known in academia but
only slowly adapting in industry. The main reason is an
enormous computational burden required compared to other
traditional control methods. We present a fast implementa-
tion of MPC using active-set method. In this contribution,
computational demand is reduced significantly by efficient
Newton step and tailored move blocking procedure.
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1. Introduction

Model Predictive Control (MPC) is optimization based
control method. Main advantages of this method is ability to
concern physical limits of the controlled plant and very sys-
tematic control design. Therefore, control design for MIMO
system is as simple as design for SISO system.

In each sampling period, open-loop control over finite
prediction horizon is find by solving an finite optimization
problem numerically. The feedback is established by the re-
ceding horizon. Receding horizon meas that every sampling
period the sequence of optimal control is re-optimized for
the receded horizon. Optimization is parametrized by cur-
rently measured state. Each step only the first control from
the control sequence is applied.

The aim of the MPC is to achieve a control minimiz-
ing given cost function, satisfying controlled system dynam-
ics and physical or other additional constraints. However,
optimization can be very computationally demanding, since
there might be many inputs and states of the system or long
prediction horizon is required. The method presented in this
paper is focused to minimize the computational and memory
requirements for the computation of the Newton step, which
usually represents the highest computation load of the MPC
algorithm.

In last decade, many outstanding algorithms special-
ized to MPC have been developed. Richter’s FGP [1] — a

fast gradient projection algorithm solving condensed prob-
lem formulation, gpOASES [2] — an higly optimized imple-
mentation of multiparametric active-set method focused on
condensed formulation as well.

Recently, algorithms for sparse MPC problem formu-
lation and exploiting problem structure have been devel-
oped, namely, gpDUNES [3] — an implementation of dual
Newton step solving the MPC problem via dual decompo-
sition, fastMPC [4] — a barrier interior-point algorithm us-
ing Newton step solved by tailored Cholesky decomposi-
tion, FORCES [5] — code generated interior-point method,
ADMMmpc [6] — an ADMM algorithm using interior-point
method in the inner loop. Note that, to the best of our knowl-
edge, efficient active-set method exploiting problem struc-
ture have not been reported yet.

In condensed formulation of the problem one has less
optimization variables, but problem itself is more complex
(ill-conditioned). On the other hand, in sparse formulation
one have much more variables, but problem has given spar-
sity pattern with usually less nonzero elements and less com-
plex (well-conditioned). Note that for condensed problem
generic solvers (e.g. quadprog or MOSEK) can be used or a
solver can be utilized for MPC problem. For sparse formu-
lation of the MPC problem algorithms have to be utilized.
That is why the condensed formulation was more popular in
the past. More details to the condensed and sparse formula-
tion of the MPC problem is disused later.

Implementation of Newton step plays an important role
for the second order method (e.g. interior-point, active-set)
based solvers. Our contribution is the implementation of ef-
ficient Newton step for active-set method tailored for MPC.
Furthermore, we extend basic optimization criterion in more
practical manner and refer that output reference tracking sat-
isfying output soft (or hard) constraints cannot be optimized
at once in efficient way and that removing weight on in-
put rate from a cost function makes algorithm significantly
faster. Move blocking strategy utilized for (all) sparse algo-
rithms is also introduced in this paper.

This paper presents an approach for fast MPC using
the active-Set method. The problem is divided into two opti-
mization tasks. In Section 2, the first task of constant refer-
ence tracking is introduced. In Section 3, the second task of
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Fig. 1: Proposed controller setup.

the MPC dynamic regulator is described. In the next section,
active-set method is sketch to show background for New-
ton step developed in Section 5. Finally in Section 6, move
blocking procedure tailored for sparse structure of the pro-
posed problem is pioneered. The proposed solution is de-
clared to be advantageous for large prediction horizons by
numerical experiment on random systems in Section 7.

In this paper, we assume discrete linear time-invariant
(LTT) system

= Ax(t) + Bu(t)
y(t) = Czx(t), t>0. (1)

2. Constant Reference Tracking

The problem presented later in this paper can handle
the input and state reference only. However, in real applica-
tions, the common requirement is the output reference track-
ing. This issue is surpassed by modification of the control
scheme — adding feedforward tracker of constant reference.
The overall control scheme is shown in Fig. 1.

The output tracking optimization problem that interme-
diate transition from output reference to input and state ref-
erence tracking is formed as

. 1 1
min o [Cay = yupllly, + 5llur —usplf, Q)
I-A -B z\ (0
st ( b ) (u) _ (rsp) (2b)
Eu, <e (2¢)

where 5, is the output reference, weight matrix Q) is
positive semidefinite and R, is positive definite and r,, =
Hy,p, is measured to controlled output mapping. Matrices
E, F and vectors e, f represent general constraints on inputs
and outputs.

By solving this minimization problem beforehand, one
can calculate the z, and u,, that will be used in the dy-
namic regulator optimization problem as the reference vari-
ables hereafter.

More extensive description of this approach can be
found for example in [7].

3. Dynamic Regulator

There are many ways of defining the cost function, de-
pending on the particular demands, in this paper the follow-
ing formulation is used.

~ 1 ~
J(zg, uk, Yi) = §||:1:np - xTH%% + §||anp — ynp”%’np
npy—1
5 2 low =20l + 1 Crx — Till?
k=1
ny—1
5 2 A+ fluk — |, 3)
k=0

where x;, € R™ is the vector of n, states. Subscript k
denotes time instant of the prediction horizon. uy, is the vec-
tor of n,, inputs, Auy is a difference between two following
control action. n,, denotes the length of prediction horizon.
z, is the state reference, u, is the input reference. Symbol
Ui represents the hard constrained outputs, i.e. output limit
value from which further deviation of soft constrained output
is penalized. Matrices Q, R, S, P are the weight matrices,
they are diagonal and positive definite.

The cost function consists of state and input reference
tracking, rate of input change cost and output soft constraints
penalty.

min J(‘Tkv U, ./y\k) (4a)

T Uk, Yk

ro = x(t) (4b)
Aug =up —up—1, u—1=ut—1) (4c)
k=0,...n,—1  (4d)
k=1,...,n, (4e)

St Tgp41 = Az, + Buy,

uy, < up < Uy,

Qk S@\k Syk?

The symbols u,,, Uy, represent the constraints on the inputs,
similarly symbols y, 7, represent the constraints on the
variable .

First of all, the problem is rewritten into the vector
form.

R 1 1
J(@,u,3) = 5lle = zrlg + 5 v —urlk

1 1 ~
+ 5 lAul + 5lCz - g )

The vectors and matrices are formed by stacking the
values for every k, forming larger vectors(matrices).

x = [xlT,sz,...,xfp]T, u
wWlod ol T ap = e aT) up =
[wl ... ul]’,Au [Au0T7Au1T7...,Au,TLP71]T and

ﬂ = [ 1T7y%—'7 e 7@\771,;)]’117@ = blkdlag(Inp & Q7 an)aR =
I,, ® R,S =1I,, ® S,P = blkdiag(l,,, ® P, P,,)
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Condensed Formulation

One can formulate condensed optimization problem
from (10). The problem is then solved only in control vari-
ables and also those, which have to be bounded, namely
and .

Next step is to transcript the relation between v and x,
defined by the system dynamics into compact matrix form.

T = ﬁxo + ‘A/u (6)
A B 0 0
A? AB B 0
p—|A| y—-| A’B AB B
A Anp—lB Anp—QB Anp—3B

By substituting (6) into criteria (5), the final equation
in matrix form is obtained.

v 5[ Al o
min = |~ ~ ~
st. u<u<u ()
y<y<y ©)
TN T _TrT
Where H = VQV+RJAFK SK v e
—PCV P
OTOVDA. T _ _ KT
and f — ViQPxzy -V @UCQ Rup — K*Se '
—PCPx

Note that the new problem formulation is minimized
just over the variable u and 7, the size of the Hessian H is
therefore n,, X (n, + n,). Also note that output constraints
remain simple — this is of our particular interest due to spe-
cific algorithm in which Newton step computation will be
used. Alternatively, when common input blocking is consid-
ered, the problem size is n. x (n, +n,), where n. is control
horizon.

Sparse Formulation

The problem formulation might be rewritten into vector
form, which is more suitable for the matrix computations.

min  J(z,u,y) (10a)
st. 0=Azxz+Bu+d (10b)
Au=Ku—e (10c)
u<u<u (10d)
y<y<y (10e)

Where B=1,,, ® B,C=1,, ®C,
The structure of the other matrices and vectors is fol-
lowing.

——I Al‘o
A -1 0
A= A I d=|0
I A I 0
[ I Tu 1
-1 I 0
K — -1 I P
I I I 0

B 4. Active-Set Method

To solve the MPC problem with constraints, the active-
set method has been chosen. It is an iterative optimization
method, which within each iteration changes a working set —
set of constraints that are active at the current iteration. The
goal is to find the active set — set that contains exactly those
constraints that are active in the solution. In every step, a
constraint is either added or removed from this set. The ex-
tensive description of this method can be found in the litera-
ture (e.g. [8]).

To compute the Newton step within the active-set
method from the formulation presented in (10), the step in
the variables u and ¥ is introduced.

(11a)
T=7 +p;g (11b)

This step is carried out in each iteration, the p,, and py
are computed, subsequently the variables v and ¥ are up-
dated. Variables u~ and §~ are the values of u and y from
the previous iteration. This change inequality constraints in
(10) into equality constraints

Fipu =0
Gip;? = 0.

(12a)
(12b)

Matrices IF;, G; depends on set of active constraints at i-th
iteration of active-set algorithm. They have as many rows as
number of active constraints with one at each of them, i.e.
the matrices have full row rank.



4 J. Burant, P. Otta, Fast MPC Using Efficient Newton Step Computation in AS Method with Tailored Move Blocking

5. Newton Step Computation
KKT System

To apply the constraints, the Lagrange multipliers are
introduced.

1 _

L ;:§(Hx —arll§+ |u” +pu — urlli + |Aul3+
|Cz — 7~ —pgl3) + N (Az + Bu™ + Bp, + d)+
p"(Ku~ +Kp, — e — Au) +~"Fp, + " Gpy.(13)

By the partial derivations of the previous equa-

tion (13), the KKT matrix is obtained as follows
R BT KT FT Du —R(u™ —ug)
P -PC GT| | ps Py
S -1 Au 0
—CTPp Q+CTPC AT z | |Qur+CTPy-
B A M T -Bu—d
K -1 I —Ku™ +e
F o 0
G 13 0

Remark 1 From the KKT matrix (namely Q+CTPC) it can
be seen that output tracking and (soft) constrained output
at the same time might cause singularity of that matrix. It
would prevent us from eliminating states later.

Reduction by Null-Space Method

Using the null-space method, the variables v and & are
eliminated. The matrices Z and Y are introduced, thanks
to them the problem will be altered according to the active
constraints. Then the first equation is multiplied by Z*', and
the second equation is multiplied by Y7'.

Pu = Zpy (14a)
pg = Yﬁg (14b)
The resulting system of equations is following.
v r 1t [p. k
] T Dyz l
S I [Au 0
T M AT z | |m (15
r A A n
1 ! Iz q
Where the matrices have following meaning.
_ T _ —
Vv =7Z"'RZ, I' =BZ, I =KZ%Z, (16)

0 =YTPY, Y =-CTPY, M=Q+CTPC

Matrix V¥ is diagonal, matrix I is block diagonal, rect-
angular, matrix II is block di-diagonal (it has blocks on the
main diagonal and under it). Matrix M is block diagonal
and square, matrix © is square, diagonal, matrix V" is block
diagonal, rectangular.

k=-Z"R(u™ — ug),
m = Qzpr + CTpgia

l=-YTPy~
n=-Bu" —d, ¢g=-Ku +e

a7

Matrix equation (15) is then reduced to smaller prob-
lem, depending only on the dual variables A a . In the final
algorithm, this smaller problem is solved first. The result
are the values of A\ and u, which are subsequently used to
compute the rest of the variables.

Reduction by Range-Space Method

First of all, it is needed to express the variables
Du» Py Au, x from the equation (15).

=01k —TTXN -1 ) (18a)
py=0"11—-""x) (18b)
Au =Sty (18¢)

r=-M"1ATA+ Yp; —m) (184d)

The next step is to express the variable x using just vari-
ables A and i, because the equation for x will be substituted
into the equation for A. Therefore, the equation (18b) will be
substituted in the equation for (18d).

r=-MYATA+ YO (1 - YT2) —m) (19)

After the adjustments, the equation for z is dependent
only on \.

r=—[M-TO 'Y ATA+TO ' —m) (20)

To solve this equation, it is necessary that the mem-
ber [M — YO~1YT] is positively definite. This is accom-
plished, which can be seen after examining these matrices,
Q+CTPC — CTPY(YPYT)~1YTPC. It s plain to see that
the worst case is when no inputs are blocked. In this case the
expression Q is the only remaining member and matrix Q is
positively definite.

The system of equations for A and u has the following
form.

B e

Remark 2 Complexity of the problem drops significantly
when weight on rate of input change is removed from the
cost function.
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The matrices of those equations have following mean-
ing.

Q=Tv'T7 + AM - YO 'T7] AT (22a)
Y =11yt (22b)
O =ITv '’ +s7! (22¢)
o=—AM-YO VI H(TO ' —m)-

vk —n (22d)
Y =TTk —gq (22e)

Matrix €2 is block tridiagonal, matrix > is block di-
diagonal, it has blocks on the main diagonal and blocks un-
der the main diagonal. Matrix & is block tridiagonal.

Remark 3 The structure of the problem is extraordinary — it
can be rearranged into block-pentagonal matrix instead. As
a consequence, a decomposition exists such that the struc-
ture remains.

There are efficient algorithms for solving block-
pentagonal either iterative or direct — for example
Cholesky decomposition followed by substitution and back-
substitution can be used.

6. Tailored Move Blocking

In case of the move blocking, it is possible to exclude
from optimization those inputs, which are the same as the
inputs in the previous steps. Thanks to that, the dimension
of the problem is reduced. Along with the inputs, some states
are also excluded from the optimization. It is possible to use
the blocking for several sequences of different length.

The blocking procedure is then done due to the follow-
ing transform

=Mz + NGup +d 23)
u = Gup, (24)

where G is common blocking matrix (e.g. [9]).
By applying this to (10) the following reduced opti-
mization is obtained.

min
T, UB,YB

st. 0=Agzp+Bpup+dp
Aup = KGug — e
ug <up <Uup
Y, <05 < Tp, (25)

J(T/B,UB@B)

where Ap = AM,Bp = (AN+B)G,dp = (A+1)d
and with cost function defined by

. 1
J(xB,UB,yB) = QHMiCB +NGU’B +d_xRBH(2Q
1 1
+5lGus — ury ||z + §||AUB||§
1 ~ 112
+ §||C$B —UBllp (26)

Since all matrices in (25) will reduce their sizes, the
computational demand for Newton step is decreased as well.

Remark 4 Since in the first term of (26) new cross term oc-
curs, the problem becomes slightly more complex.

Example Let us show one case for which input

blocks are determined by np = [1,2,3], obvi-
ously n, = 6 and n. = 3 then. For this case
the vectors and matrices in (23) will look like

rB = [l’lTBal’ngIgB]Tv up = [uoTBaU{BngB]T: :’?B = [ﬂ{;sggu»ﬂ&g}T

I 0 I
A B I
o I B 0 B I
M= 1 N = B .G = s
A? AB B I
I 0 I

This example is illustrated in Fig. 2.

Remark 5 Size of the first block np, has to be one. Other-
wise, M contains zeros in the first row, which cause singu-
larity of Ap.

Remark 6 As shown in the example, number of state sam-
ples has to be at least equal to the number of input samples.
Position of this minimum samples is given by size of input
blocks. Other state samples can be added without loss of
sparsity pattern.

7. Numerical Experiment

In order to test the effectivity of the approach, pre-
sented in this paper, it has been compared with equivalent
Newton step computation in condensed formulation [10].
The comparison has been provided in MATLAB environ-
ment. Simulations were run on quad-core processor 15-4460
CPU @ 3.20GHz. A series of tests has been ran on ten
randomly generated systems with the following properties,
ng = 10, n, = 10, n, = 10. The systems were generated
by MATLAB function drss(). Prediction horizon n, was in
range [2, 80]. The number of active constraints were tested
in full range.

The images in Fig. 3 show that the complexity of the
problem for condensed formulation is strongly dependent on
the number of active constraints compared to the proposed
sparse formulation. Therefore, for no active constraint (the
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Fig. 2: Example on move blocking.

worst case scenario) the proposed algorithm performed bet-
ter for n, > 40 — note that this value is strongly depen-
dent on the particular implementation — however, there is a
value of n,, from which the proposed computation procedure
is faster. On the other hand, the condensed Newton step re-
main faster when many constraints are permanently active.

Computation time [s]

80

- 20 40
1600 0

Length of prediction horizon
Number of active constraints

(a) Condensed setup
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Computation time [s]
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1600 0 0
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(b) Proposed setup

Fig. 3: Trends in computation times depending on predic-
tion horizon length and number of active constraints (imple-
mented in MATLAB).

8. Conclusion

At the beginning, this paper gently follows [4] where a
similar idea of efficient Newton step is presented for interior-
point method. We adopt the idea for active-set method and
extends it for more practical problems yet computationally
still reasonable. Furthermore, we show that this procedure
cannot be used for output tracking satisfying output con-
straints at the same time. Therefore, we encourage solve
the problems separately, namely constant reference track-
ing (feedforward part) on one hand and dynamic regulation
(feedback part) on the other hand. Last but not least, ex-
tension of move blocking for the proposed method is dis-
cussed. Move blocking is a well known strategy commonly
used for problems in condensed form to decrease problem
size even more. To the best of our knowledge, the strategy
have not been adopted for problems in the sparse form yet.
Thus as the proposed problem may be still computationally
challenging, we introduce move blocking technique tailored
for sparse formulation of the problem in such a way that the
problem sparsity structure remain untouched.

The results presented in this paper are still preliminary,
more details on implementation of overall active-set algo-
rithm and both theoretical and practical proves of efficiency
will be addressed in forthcoming journal publication.
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