POSTER 2016, PRAGUE MAY 24

Solver for Systems of Linear Equations with Infinite
Precision on a GPU Cluster

Jirit Khun

Department of Computer Systems, Faculty of Information Technologies,
Czech Technical University in Prague, Prague, Czech Republic

jiri.khun @fit.cvut.cz

Abstract. In this paper, we would like to introduce an ac-
celerated solver for systems of linear equations with an in-
finite precision designed for GPU clusters. The infinite pre-
cision means that the system can provide a precise solution
without any rounding error. These errors usually come from
limited precision of floating point values within their nat-
ural computer representation. In a simplified description,
the system is using modular arithmetic for transforming an
original SLE into dozens of integer SLEs that are solved in
parallel via a GPU cluster. In the final step, partial results
are used for a calculation of the final solution. The usage
of GPUs plays a key role in terms of performance because
the whole process is computationally very intensive but also
well scalable. An overall performance of the solver directly
depends on the cluster's configuration but it can offer the
performance far beyond a single computing node.

Keywords

AMD; Beowulf cluster; dense matrix-vector multipli-
cation; dense matrix representation; GPU; GPGPU;
GPU cluster; high performance numerical linear alge-
bra; modular arithmetic; OpenCL; OpenMP; MPI; par-
allel execution; system of linear equations;

1. Introduction

There are many scientific tasks that need to solve large
systems of linear equations as a part of their solutions. We
can found such tasks in many areas of modern science like
mathematics, physics, chemistry, biology, economics, and
many others.

Tasks taken from the real world usually work with
floating-point numbers and that can be a problem. Repre-
sentations of floating-point values stored in computers have
typically only limited precision that leads to limited preci-
sion of calculations and consequently their results. That can
be a disaster if we are working with ill-conditioned tasks
where only small difference in input values causes enormous
difference in results. Therefore several methods have been

developed in order to minimize such issues and provide as
precise solution as possible.

1.1. Rounding-free arithmetic

In our solver we are using a method [1] that incorpo-
rates modular arithmetic in order to provide solution with-
out any rounding error i.e. with the infinite precision. The
method is relatively simple and consists of a few steps. At
the beginning input values are transformed (scaled up) into
integer values. Than the integer SLE is solved in sufficient
amount of different modular arithmetic. At the end all re-
sults from individual solutions are put together for a calcula-
tion of final solution via Mixed-radix sort algorithm. Despite
the simplicity the whole process is computationally very in-
tensive because the method requires to solve many SLEs in
different modular arithmetic. Therefore we utilized a GPU
cluster as an important source of computational power.

1.2. CPU/GPU

Todays GPUs are able to provide general-purpose com-
putations (GPGPU) with a peak performance far beyond to-
days CPUs. Their power lies in a massive parallelism be-
cause they usually consist of hundreds or thousands of small
and simple computation cores. The GPGPU approach re-
quires very good planning in terms how the task utilize a
GPU device and its parts. Only with an appropriate program
model and fine-tuning it is possible to unlock full potential
of a GPU.

During the process we need to solve dozens of indi-
vidual SLEs and that can be processed in parallel. Even the
solving process itself consists of steps that can be done in
parallel. Therefore the usage of GPU is an obvious choice.



2 J. KHUN, SOLVER FOR SYSTEMS OF LINEAR EQUATIONS WITH INFINITE PRECISION ON A GPU CLUSTER

1.3. GPU cluster

Even high performance of a single GPU can be often
insufficient for such demanding task like solving thousands
of large SLEs. Therefore our latest version of the solver in-
volves computing via cluster of GPUs.

A GPU cluster consists of n computing nodes, each
equipped with GPGPU device (next to a necessary CPU and
RAM). Every node is connected with others by some kind
of high-speed bus and can provide the same functions like
standalone computer. It is an example of distributed memory
multiprocessor system.

In academical environment it is typical that researchers
are working with relatively cheap commodity-grade com-
puters. These personal computers or even laptops can be
equipped with appropriate GPU and networked into a small
local area network. This is usually called a Beowulf (GPU)
cluster and our research is also using such type of system.

2. State of the art

The topic of this article is an intersection of two large
research areas. The first is computation with floating-point
values and resulted difficulties like limited precision, round-
ing, accumulation of errors, etc. The second is computation
intensiveness rising from necessity to solve large systems of
linear equations which is a task with a time complexity equal
to O(n3). Science made a significant progress in both of
these areas in past decades.

2.1. Avoiding limited precision of floating-point
representation

The main difficulty during usage of standard floating-
point representation, according to the technical standard
IEEE 754 [12], within a computer program is the limited
precision resulting into rounding errors and their following
accumulation during the computation. The IEEE 754 stan-
dard also defines a non-uniform distribution of all possible
values. It can lead to another limitation in terms of preci-
sion.

Therefore several other approaches including appropri-
ate arithmetic operations have been developed for floating-
point representation e.g. logarithmic, p-adic, arithmetic with
a continued fraction, modular or interval arithmetic [6].

Another possible approach how to avoid the problems
with the standard floating-point representation mentioned
above is using special libraries allowing user-defined length
of floating-points variables. The libraries, e.g. GMP (GNU
Multiple Precision Arithmetic Library) [7] or its fork MPIR
(Multiple Precision Integers and Rationals) [8], can bypass
the limitation of standard floating-point representation, with

a help of complex data structures based on basic data types,
and bring almost unlimited precision of calculations. A sig-
nificant drawback is a high memory and computational de-
mands that do not allow to use them effectively for compu-
tational intensive calculations like solving large systems of
linear equations.

2.2. Acceleration by vector processing

As already mentioned above the solving of SLEs is
a difficult task that requires a lot of computational power.
Time complexity of solving a single SLE with a Gauss-
Jordan elimination is O(n?3), where n is a number of un-
knowns within the system. Therefore several approaches
have been developed allowing solving of larger SLE. First
effective approach for solving large SLE had been repre-
sented by vector computers. These devices equipped with
a special processing units called vector processor had been
capable to accelerate calculations with vectors and con-
sequently whole solving process. Among first computers
that fully utilized vector technique was for example famous
Cray-1 in 1976 [13]. Than many other types followed its
path and vector processing became a standard and necessary
approach how to achieve the highest performance.

Experience learned from vector computing became an
inspiration for SIMD (Single instruction, multiple data) tech-
nique that influenced design of standard CPUs during 90s.
The main idea was simple. One instruction is applied in par-
allel on several operands. This is very useful for solving
large SLEs where dozens of very same operations must be
processed on different data. SIMD instructions are still one
of the main trends in terms of modern CPUs development
and enhancing standard instruction set with vector opera-
tions. There are several representatives of the SIMD tech-
nology today, for example MMX, SSE and AVX developed
by Intel, 3DNow! (AMD) or NEON (ARM).

A very modern way how to handle vector operations
and consequently solve large SLEs is using GPU for the
general-purpose computing. First unified GPU in the world:
NVidia's G80, capable to handle GPGPU operations, was in-
troduced in 2006 [14] and since them all major vendors offer
GPUs that can provide the general-purpose computations.
As mentioned above the key aspect of GPU computational
performance lies within the cooperation between many rel-
atively simple computational elements - processors. There-
fore a modern GPUs internal architecture is quite similar to
a supercomputer with many computational nodes where ev-
ery of them is processing only small part of the given task.
This approach is logically leading to increased demands in
terms of synchronization and utilization of computational re-
sources. We have chosen the GPGPU approach because it
can offer far more computational power than presents CPUs
and due to the inherited parallelism it seems to be a logi-



POSTER 2016, PRAGUE MAY 24

cal choice for our task where it is necessary to solve large
amount of independent SLEs.

2.3. Related work

There are few other papers dealing with the similar
topic like our work. All these works took the mathemat-
ical background from [1] and tried to solve the dozens of
SLEs with a different approach. First work [2] is propos-
ing special hardware architecture for accelerating the whole
process. Second work [3] is using OpenMPI technology for
parallelization of the computing process among many inde-
pendent computing nodes (without involving GPUs). Third
article [5] is describing acceleration via GPU but the work
is using only single GPU and different technology and also
partially different mathematical approach than our work.

3. Mathematical background [4][5]

Let us start with a simple system of linear equations:

Ax=b (1)

where A C RY*¥ is matrix of system of N equations
of N unknowns, b ¢ R¥ is the right-side vector and x C
R¥ is the required vector - a solution of the system of linear
equations.

3.1. Matrix Scaling

At the beginning of the whole process it is necessary
to scale up the whole input matrix with appropriate constant
in order to avoid a computation with floating-point values.
That means that the matrix is transformed into its integer
representation. It must be done carefully without loosing a
single bit of precision. We can achieve this condition by
using appropriate scaling constant that will be 2", where n C
N.

The approach how to determine the scaling constant is
following. At the start we need to find the smallest element
in the absolute form of each row. Then we have to extract
the absolute value of its exponent and multiply this value by
253, This constant comes from the simple fact that a signif-
icant mantissa bit size in the technical standard IEEE 754
for double precision floating point number format is 53 bits
long. Scaling constant s is computed as follows:

s = 253 * 2|ewp(min7xow)|’ (2)

where exp represents a function that extracts and re-
turns the exponent (as an integer - power of 2) and min,oq,

is the row's element closes to zero (the smallest one in the
absolute value). More details can be found in [1].

3.2. System of Linear Equations Solution

After the scaling we have the original system of linear
equations scaled up into big integer values:

Ax=b 3)

Now we have to solve it by using a multi-modulus
arithmetics over a commutative ring (Zg, &, ®) with a base
vector /3 that is an equivalent to the single-modulus arith-
metics over (Zyy, +, -) and module M.

M has to have integer with big enough positive value in
order to avoid rounding errors during the computation. For
estimation of the M value we are using Hadamard's deter-
minant D calculated from matrix A.

IDI* < [](lad| + |a%a| + - + |aZ,])- “)
=1

The highest value of the M that could appear during
the computation can be estimated in following way:

nzmazx(al)
M > 2max n—1 / —1
n(n —1)"z maz(a;;)" 'maz(y;)
&)

where

i i=1,2,..n
and

ged(M,D) =1

We also need to keep following conditions for vector
B8 = (my, ma, ...,m,) and module M:

. H:leM
e My <mo < ...< My

* M1, Ma, ..M, are primes

The following condition for the SLE (Eg. (3)) determi-
nant is satisfied when:

DI, #0,i=1,2,...,7 (6)

then the SLE (from Eq. (3)) solved within (Zg, ®, ®)
due to the vector 3 can be expressed as:



4 J. KHUN, SOLVER FOR SYSTEMS OF LINEAR EQUATIONS WITH INFINITE PRECISION ON A GPU CLUSTER

|Ax],,. = [bl,,. @)

or, for individual modules m; of vector /3:

|Ax],,. = bl ,i=12..r (®)

Following expression is also valid for Eq. (3) within
(Zﬁ7 D, @):

|AAY| = |AT'A[,=E )

”ﬂ

and

x5 = A7 D], (10)

where E is the identity matrix. We will use Gauss-
Jordan elimination algorithm with the non-zero pivotization
for solving the SLEs from Eg. (8) within the specific mod-
ular arithmetics. Despite the original Gauss-Jordan elimina-
tion we are using the modular arithmetics for all algorithm's
steps. There is also a simplification within the process. We
do not need to find the greatest element. In the elimination
steps every non-zero value is appropriate due to usage of the
modular arithmetic.

The G-J elimination algorithm is relatively simple. We
have a matrix W of dimension n x (n + 1) consisting of
matrix A and vector b:

ain a2 - Gip | b1
a1 G2 - Qo | b2

W= ) . i ) (11)
anl an2 et Ann bn

The goal of the algorithm is to eliminate all W ele-
ments one by one to get the resulting x vector to Eg. (10)
after ~ n> elimination steps.

3.3. Inverse Transformation

After completing two previous steps we have a set of
vectors x within each module from 5 = (mq,ma,...,m,).
They represent sub-solutions for the specific (Zys,+, )
arithmetic. We will use this sub-solutions within inverse
transformation back to (Zg, ®,®). The mandatory condi-
tion for this process is a non-zero determinant from Eq.(6).

We are using Mixed-radix algorithm [2] for this inverse
transformation. The final result of the calculation is the vec-
tor x in form of fractions that represents the solution of the
input SLE (Eq. (3)).

4. Overall architecture

This section is focused on the overall architecture from
the upper point of view. Processes within individual nodes
will be described in the next section.

Our solver is based on simple but well scalable master-
slave architecture. A single master node is preparing work
and receiving results from various number of slave nodes.
At the end all partial results from slave nodes are used for
calculation of a final result back in master node.

There is no difference between individual nodes in
terms of program code. Also the master node can perform
the function of slave and do the same work in case of inac-
tivity.

4.1. The exact sequence of the algorithm steps

1. An input SLE (matrix) is scaled up from floating point
to integer values within master node.

2. The scaled up matrix is distributed from master to all
slaves.

3. The master calculates all modulus (numbers) necessary
for the calculation.

4. Based on number of slaves (and their computational
performance) master divides the modulus into groups
of various size and sends them to individual slaves. One
group keeps for itself.

5. All nodes perform G-J elimination on the scaled up SLE
within the specific modular arithmetic for all assigned
module numbers.

6. All nodes send their partial results back to master node.

7. Master node calculates final result from the partial ones.

4.2. Used technology

The background technology allowing the communica-
tion among nodes is Message Passing Interface (MPI). The
framework can be used in small clusters with only few com-
puters as well as in largest supercomputers with hundreds of
thousands nodes. It is widely known and reliable technology.
We are using open source implementation OpenMPI [16].

5. GPGPU programming

As mentioned above, the GPU is usually formed by
hundreds or thousands of small computation cores. Com-
pared to the modern CPUs' cores they are very simple and
small. Therefore one GPU chip can contain so many of them.



POSTER 2016, PRAGUE MAY 24

A theoretical peak performance of modern GPUs is often
more than magnitude higher than the computation perfor-
mance provided by modern CPUs. But unlike development
for today's modern CPUs is GPGPU programming very sen-
sitive for careful design of the program, utilization of com-
puting sources and synchronization.

5.1. Massively parallel architecture

In our research we have focused on GPGPU provided
by AMD [15]. Unlike more widespread Nvidia's CUDA
technology is general-purpose computing in AMD based on
OpenCL framework [10] that represents really universal so-
lution supported by many other vendors including Intel, Ap-
ple, Qualcomm, Xilinx and many others. The key advantage
of OpenCL technology is its open design available for every-
body. It is a general standard for high performance comput-
ing that can be used not only in GPGPU area. Applications
based on this technology can therefore operate on different
devices provided by different vendors.

On figure 5.1 we can see a base block of modern AMD
GPU a Compute Unit (CU). Compute unit is a symmetrical
multiprocessor containing 64 processing elements (i.e. com-
puting cores) divided into 4 independent SIMD units. There
are also other blocks like for example scalar unit, branch pre-
dictor or special load / store units. One CU can process 4 in-
dependent blocks of compute threads at the time while many
others can wait for data store or data load from the main GPU
memory.

Latest AMD GPUs contain up to 64 CUs. Our testing
GPU (Radeon HD 8750M) was a mobile type equipped with
6 CUs (384 processing elements). It represents bottom line
of available GPUs.

5.2. Parallel design of our solver (single node)

As mentioned before the key point during GPGPU
development is an optimal handling with available GPU
sources. Tasks that are processed on a GPU are called ker-
nels and they are dispatched from CPU according a host ap-
plication plan. There are many aspects that have to be satis-
fied in order to get a significant part of potential performance
like data hazards or synchronization. Also it is necessary
to keep the GPU device as much as possible occupied by
computing because latency between main GPU memory and
individual processing elements is extensive. Otherwise the
whole solution can be even slower than on common CPU.

Logically not all tasks are suitable for GPGPU process-
ing which is optimal for tasks that can be processed mas-
sively in parallel. The solving of SLEs is such type of task
and that is why we chose the GPGPU approach for its accel-
eration. On figure 5.2 we can see a heart of our application -

the elimination kernel which represents the key function that
process the Guass-Jordan elimination on individual SLEs.

The kernel is providing several steps that are necessary
for complete G-J elimination. At the beginning a bunch (64 -
256) of compute threads (called work-items in OpenCL ter-
minology) is generated and creating a work-group. Work-
group is a term from OpenCL terminology and represents
synchronized group of work-items with a common base like
a shared memory, synchronization and other aspects.

Then the work-items are assigned to individual input
matrix's columns. The matrix represents one SLE that must
be processed by the G-J elimination. Every work-item has its
own column or even more if the matrix's dimension is higher
than number of work-items. In general we incorporated a
column based parallelism.

Then comes the first step within the elimination process
- a line swapping. If it’s necessary to swap two lines within
the matrix every work item will swap own values within its
column.

Next step is a calculation of modular inversion where
every work-item calculates the inversion for the input value
from its column.

In the next step is this value used (by the work-item that
calculated it) for an elimination row calculation. This row is
after that used for the forward elimination steps when the
processing is heading from upper part of matrix down to the
bottom of the matrix. It is a standard part of G-J elimination
process.

Then kernel load the appropriate elimination row from
the global memory into local memory (with low latency) and
the elimination step will take a part in opposite direction
from bottom to upper parts of the matrix.

All these steps are performed in the described order un-
til the G-J elimination is finished.

A single CU can process four independent work-groups
at a time due to the independent SIMD units. That repre-
sents a solving of four independent SLEs at once. Each of
this work-groups is also working in parallel supported by 16
processing elements within the SIMD unit. It is important to
mention that a GPU usually contains more than one CU so it
can run concurrently more independent kernels or more in-
stances of the same kernel. Even our relatively weak testing
GPU were able to process 6 kernels at once. This is a triple
parallelism within single GPU!

6. Results

Final version of the program was not ready during the
writing of this paper therefore we are showing results only
for a single-node testing that is mentioned below. The pre-
liminary results of multi-node solution are very promising
and tending to a linear scalability for small number of nodes



6 J. KHUN, SOLVER FOR SYSTEMS OF LINEAR EQUATIONS WITH INFINITE PRECISION ON A GPU CLUSTER

Message Bus
SIMDO Branch & l

PC&IB &= - Message Unit
10 Wave
l' Export/GDSDecode

SIMD1
PC&IB ¢
10 Wave

SIMD2
PC&IB &=
10 Wave

) 2

SIMD3
PC&IB =

10 Wave LD5
Decode

&= Vector MemoryDecode

Scalar Scalar Unit

Decode 8 KB Registers

Integer ALU

UO e 43 Ig Yy UoRINASU|

=
(=]
E=
o
2
=
2
2
]
=
I=)
=
[T}
"
c
9
i3]
=
2
=
w
£

Input Data (PC/State/Vector Register/Scalar Register)

SIMDO SIMD1 SIMD2 SIMD3 Export
Read/ Bus
64 KB 64 KB 64 KB Write
Registers 4@ Registers € Registers @) Registers Data Read/
Write
MP P MP L1 12 Cach
Vector Vector Vector Cache Ens
ALY ALU ALY
16KB
64 KB LDS Memory L
4 CU Shared 16KB Scalar Read Only L1 Cache Read/
Request -
- Arbiter Wirite
4 CU Shared 32KB Instruction L1 Cache L2 Cache

Fig.1.

Schematic representation of a Compute Unit (CU) that represents an independent SMP engine containing 64 computing

elements capable to handle hunderds of computing threads [9]

but there are still some minor issues that must be optimized.
On the other side the single-node results demonstrate well
the potential of the multi-node solution and allow us to eas-
ily estimate final results.

6.1. Single-node testing

We were testing our solution on Hilbert matrix with
wide range of dimensions. It represents ideal testing plat-
form for the precise solving because its ill-conditioned val-
ues. Right side of the matrix (the vector b, see section 3 for
a reference) was appropriately generated in order to have a
nonsingular matrix with an existing solution. We have also
developed a system that can prove whether the provided so-
lution is absolutely (infinitely) precise. That is very impor-
tant especially for testing tasks with a higher dimension.

6.2. Testing platform

Like a testing platform we have used a common note-
book HP Probook 450 with a following configuration:

e CPU: Intel Core i5 4200M (Haswell), 2x physical
computing core, 4x logical computing core, 2,5 - 3,1
GHz (turbo)

* GPU: AMD Radeon 8750M (384 processing elements,
6 Compute Units, 825 MHz), 2GB DDR3 (900 MHz)
Memory

* RAM: 8GB DDR3 1600 MHz

We chose these common testing platform on purpose
because we wanted to prove whether it is possible to process
such computationally intensive task in reasonable time on a
standard hardware or even on a notebook that is equipped
with appropriate GPU.

6.3. Experiments and results

For testing purposes and comparison we have prepared
3 versions of the program in terms of acceleration of the G-
J elimination that is the computational most intensive part.
First version is completely sequential and uses only one
compute thread running on a CPU. Second version is us-
ing OpenMP technology [11] for utilizing all available CPU
sources (all cores) via multi-thread execution. This version
is thus also parallel like the third one but does not use GPU.
Third version is the leading one using OpenCL technology a
utilizing GPU.

We gradually tested solving of Hilbert matrices with
rising dimensions. We are intentionally showing only results
of the G-J elimination itself because that was the only part of
the algorithm that differed among the versions and represents
the significantly largest time fraction from the whole compu-
tation and therefore we can omit the rest of the calculation
from the comparison. All mentioned results within table I
are calculated like an arithmetic mean from 5 independent
experiments. It is important to highlight that for example
solving of Hilbert matrix with dimension 1000 usually re-
quires to solve a few thousands of individual SLEs within
different modular arithmetic. The elimination time is a time
for solving all of them.



POSTER 2016, PRAGUE MAY 24 7
( Start \
J
A 4 Load eliminination row
Work-items 0..n (= single work-group) —»{ The actual (n-th) elimination row is loaded from global to local memory.
" Every column is loaded via own work-item (-> column parallelism)
VVYVVVVVVVVYVVYVYVYVY VY VVVVVVVVVYVYVYYVYYVYY
Swap matrix lines Matrix elimination (backwards)
—> ifinecessary ->n-th column within n-throw= 0 _ The elmination row is used for subtraction of the other rows (n-th - 1
E Ki . Iy it's col > col lleli and further). Each column of each row is subtracted by single work-item
very work item is swaping only it’s column (> column parallelism) (> colamn parallelism)
l l l l l l l l l o
\ 4 h 4 vy A 4 N A 4 Y
Modular inversion calculation ves
Isn>0
Every work-item calculate the same inversion with help of value stored
in n-th column on n-th row (> column parallelism)
VVYVVVVVVVVVVVYVVYVYY If there isn’t any row for the swap /'7"7
Elimination’s row calculation > End
N-th work-item updates its own column (n-th) in the elmination row
with help of calculated inverse value (-> column parallelism)
VYVVVVVVVYVYVVYVYVYYVYY
Matrix elimination (forwards)
The elmination row is used for subtraction of the other rows (n-th + 1
and further). Each column of each row is subtracted by single work-item
(-> column parallelism)
n=n+1
Y
Yes No
Is n < matrix
dimension ?
Fig.2. L . . . L s
This diagram represents a key part in the SLEs solver - function that are processing Gauss-Jordan elimination on individual
SLEs in a GPU
The table contains calculations of achieved accelera- Dim. (n) | Seq.(s) | OpMP (s) | OpCL (s) | Spdup
tion that provided OpenCL (GPU) version of the program 10 0.01 0.01 0.85 0.01
against multi-threaded OpenMP (CPU) version. We can see 50 0.21 0.17 0.91 0.19
that for matrices with dimensions equal to 300 and more is 100 2.61 1.65 1.45 1.14
acceleration achieved by GPU very significant and at least 4 300 176.82 98.60 20.80 4.74
times higher than by fully utilized CPU (OpenMP). That is 500 1254.12 671.47 111.71 6.01
a very good result in situation when we are actually using a 750 6150.62 2995.96 535.02 5.60
low-end GPU. 1000 15120.26 7395.07 1596.31 4.63

A little degradation of GPU results for matrices with
dimensions equal to 750 or 1000 is caused by small amount
of GPU memory when data must be transfered gradually into
a GPU and back. Itis delaying the whole calculation because
data transfer via PCI-Express bus is significantly slower then
the rest of the subsystems.

Best performance was achieved for matrices with di-
mensions equal to 500 when GPU processing provided even
6 times better performance than the OpenMP version.

Tab. 1. Time of G-J elimination and achieved acceleration on
single computing node (1 GPU)

7. Conclusion

Our work is presenting a non-standard and effec-
tive way how to obtain infinitely precise solution for ill-
conditioned floating-point SLEs. The modular arithmetic's
approach can be finally used on a common and cheap HW
even for large SLEs. With only a single bottom line GPU
we were able to achieve about the magnitude higher perfor-
mance than on today's modern CPU.



8 J. KHUN, SOLVER FOR SYSTEMS OF LINEAR EQUATIONS WITH INFINITE PRECISION ON A GPU CLUSTER

The usage of a GPU cluster is pushing the whole solu-
tion into higher performance level. Even preliminary results
show us that the scalability of the algorithm is almost linear
for an adequate number of computing nodes. Large SLEs
can be solved with the infinite precision in several seconds.

There are still performance bottlenecks within this ap-
proach like for example necessity to use GMP/MPIR library
for final calculations on CPU side or an overhead necessary
for GPU processing. But it is obvious that the GPU acceler-
ation worths it.

Acknowledgements

This research has been supported by CTU internal grant
SGS No. SGS16/122/OHK3/1T/18.

References

[1]1 Gregory, R.T.: Error-free computation: why it is needed and methods
for doing it. R. E. Krieger Pub Co, 1980

[2] Lérencz, R., Morha¢, M.: A modular system for solving linear equa-
tions exactly. Computers and Artificial Intelligence, Vol. 12, 1992

[3] Vondra, L., Lérencz, R.: System for solving linear equation systems.
Seminar on Numerical Analysis, pages 171-174, Technical University
in Liberec, 2012

[4] Lérencz, R.: Aplikovand numerickd matematika a kryptografie. Vyda-
vatelsti CVUT, 2004

[5] Hladik, J., Lérencz, R., gimeéek, L.: Clock Math - System for Solving
SLEs Exactly. Acta Polytechnica, Vol. 53, No. 2, pages 70-74, 2013

[6] Hickey, T., Ju, Q., van Emden, M.H.: Interval Arithmetic: from Princi-
ples to Implementation. http://fab.cba.mit.edu/classes/
S62.12/docs/Hickey_interval.pdf

[7] The GNU Multiple Precision Arithmetic Library (GMP), https://
gmplib.org/

[8] Multiple Precision Integers and Rationals (MPIR), http://mpir.
org/

[9] AMD Graphics Core Next (GCN) Architecture - White Paper,
https://www.amd.com/Documents/GCN_Architecture_
whitepaper.pdf

[10] Khronos Group - OpenCL, https://www.khronos.org/
opencl/

[11] The OpenMP API specification for parallel programming, http://
openmp.org/wp/openmp-specifications/

[12] IEEE Standard for Floating-Point Arithmetic.. IEEE Std 754-2008,
pages 1-58, 2008

[13] SCD Supercomputer Gallery:  CRAY 1-A: 1977 - 1989,
https://www.cisl.ucar.edu/computers/gallery/
cray/crayl. jsp

[14] NVIDIA GeForce 8800 GPU Architecture Overview. Technical
Brief, 2006, http://www.nvidia.com/page/8800_tech_
briefs.html

[15] AMD Developer Central: OpenCL™  Zone, http://
developer.amd.com/tools-and-sdks/opencl-zone/

[16] Open MPI: Open Source High Performance Computing, http://
wwWw.open-mpi.org/



