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Abstract. Current high-throughput technologies lead to the
boost of omics data with thousands of features measured in
parallel. The phenotype specific markers are learned from
the data to better understand the disease mechanism and to
build predictive models. However, the learning is prone to
overfitting, caused by a small sample size and large feature
space dimension. Consequently, resulting models are inac-
curate and difficult to interpret due to the complex nature of
omics processes. In this paper we present the discoveries
and nuggets we have made by tuning regularization parame-
ters of our method we have recently developed. We extracted
nuggets supported by relevant literature record. The main
contribution is that these nuggets are relevant to potentially
causal mutations, though extracted from solely gene expres-
sion, i.e. non-mutational data.
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1. Introduction

Life sciences, namely molecular biology, have under-
gone an explosive progress during recent years. Along with
the human genome decoding and subsequent conjuncture of
high-throughput technologies, such as microarrays or next-
generation sequencing, a mass production of biomedical data
has begun. The high-throughput technologies facilitate par-
allel measurement of thousands of features at the multiple
omics levels such as genomics, transcriptomics, proteomics
or epigenomics. Consequently, thanks to the still-improving
knowledge of omics units structure, we are able to algorith-
mically infer underlying regulatory mechanisms and omics
interactions. These predicted interactions and mechanisms
are available along with the databases of in vitro validated
interactions and mechanisms, growing solely due to conven-
tional scientific activity.

However, to really profit from this progress, namely
to deliver personalized medicine [17] in the field of health-

care and facilitate new discoveries in the research field, re-
spectively, there is an urgent need for well-defined and re-
producible methodologies of evaluating and interpreting the
masses of data generated and driving the experiments in the
smart way. Currently, we are flooded with diverse results of
various studies and respective methods of evaluation. The
results are often false positive, due to the overfitting on rela-
tively small sample of examples. Moreover, they often lack
any mechanistic or even causal interpretation. A modern
evaluation technique should not only assign significance to
predefined hypothesis, but should be capable of 1) active
making new hypotheses based on measured data and avail-
able domain knowledge, 2) estimating their empirical valid-
ity and 3) proactive spotting new targets for their causal ver-
ification in vitro.

In our latest work, we have developed a methodology
for learning comprehensible yet accurate linear models [2].
The models are based on support vector machine (SVM),
while their comprehensibility and interpretability is deliv-
ered by several regularization terms. In this paper we present
the discoveries and nuggets we have made by tuning regular-
ization parameters of our method.

2. Motivation and Related Work

Here, we give a motivation for using domain knowl-
edge in omics data analysis. Next, we present regularization
as a promising approach to integrate the knowledge directly
into the learning in order to increase the classification accu-
racy and comprehensibility of resulting molecular markers.
Then, we review the existing regularization methods for lin-
ear models.

2.1. Integration of Domain Knowledge

The straightforward approach for integration of domain
knowledge is set-level analysis [16, 14, 9], where one aims to
identify entire sets of genes that are differentially expressed.
The sets typically refer to a priori defined pathways or gene-
ontology (GO) terms. The expression level of contained
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Fig. 1. Undesired effect of aggregation, when not the majority
of genes in a gene set is expressed.

genes is aggregated to one meta-feature. These new features
are obviously more interpretable as they refer to previously
defined abstract terms. Actually, this is a dimension reduc-
tion approach to prevent the overfitting. Surprisingly, the
overall predictive accuracy often decreases [13]. Though re-
moving noise, a portion of predictive information may be
erased by an aggregative procedure. This phenomenon, de-
picted in Figure 2.1, may appear namely in the case when a
significant number of genes is expressed in a predefined gene
set, yet not the majority. To address this a more granulated
gene sets should be employed, e.g. the more specific GO
terms. However, the number of possible sets in which the
genes aggregate can be large too (more than 10,000 curated
gene sets currently exist).

An alternative approach to incorporate domain knowl-
edge is regularization. Regularization is a general way to
address overfitting by imposing a prior hypothesis on the
learning process. The hypothesis may be interpreted simply
as a restriction of the model space as in the case of deci-
sion tree pruning. For our interest, the hypothesis has a form
of domain knowledge. Unlike set-level aggregation which
crisply changes and reduces the set of available models, the
regularization approach merely gives a soft preference for
one model over the less expected one. The latter may be
admitted though, requiring stronger evidence, namely more
training examples in its favour.

The regularization approach allows a more flexible for-
mat of domain knowledge than the set-level aggregation.
Unlike e.g., predefined pathways which are purely synthetic
human-made concepts, the regularization-based framework
enables us to work with more natural entities such as the
omics feature interactions. The interactions are commonly
based on structural properties of the units that underlie the
features, such as nucle- otide sequence or a higher-order pro-
tein structure. Yet, it does not say which data context (e.g.,
organism, phenotype, disease) the interaction works in. This
issue of contextual dependency is addressed by the regular-

ization approach as follows. During the learning process, if a
feature empirically proves important for the phenotype pre-
diction, we impose that some of the potentially interacting
features would be similarly important. Finally, if a pair of
interacting features proves relevant in the same phenotype
model, we can assert this interaction is valid within the con-
text of particular domain and phenotype. Even though the
predicted interactions suffer from false positivity, the method
needs not be misconducted. The regularization, as intro-
duced above, does not insist on all the interactions, unless
they are sufficiently supported by the training examples.

2.2. Regularization of Linear Models

Regularization is mainly exploited in statistical learn-
ing. Support vector machine (SVM) [6] is a state-of-the-art
statistical learning method which performs well even in GE
domain, being capable of dealing with large dimensional-
ity with sufficient generalization [8]. Nevertheless, in life
sciences, the model itself is often as highly appreciated as
its predictive output. The support vector machines provide
a black-box model, though, which is hard to be explained
reasonably by domain experts. Hence, there have been sev-
eral attempts to brighten SVM-based black box models by
additional regularization terms. Similarly to elastic-net reg-
ularization [20] in the case of regression, the doubly regular-
ized SVM [18] adds a sparsity term to the objective function.
This term imposes ¢!-norm to the weights of linear model,
and thus encourages some of them to be zero. This leads to
potentially more interpretable models. Actually, the learner
performs an embedded feature selection (FS) without com-
mon feature-selection bias [1].

When regularizing by the domain knowledge, the
straightforward approach is using network kernels. Namely,
Lavi [10] employs a special interaction term to regularize
SVM. This term encourages an optimizer to assign similar
weights to the interacting features consistently with the in-
tuitive definition of knowledge-based regularization in Sec-
tion 2.1.

A similar approach is in [5]. However, those SVM-
based methods provide the models which are still difficult to
interpret. The resulting model is merely a set of weights for
all the measured features, some higher, some lower. To ob-
tain a comprehensible model, feature selection is obviously
needed. Anyway, as mentioned above, FS introduces an-
other kind of bias into the model. Moreover, these methods
have been reported as being quite unstable as to the network
strength parameter 8 [10], while there is absolutely no rule
of thumb to set this parameter in advance. Hyperparame-
ters like this are often set by nested cross-validation which
increases the computational cost quadratically, though.

Li [11] nicely combines the interaction and sparsity
term in the linear regression analysis. More interpretable
models are thus produced. This problem is reducible to
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the lasso problem [15] which can be effectively resolved.
However, as a regression formulation, this approach is not
suitable for classification problems. Moreover, there is no
study of model behaviour under different parametrizations.
Henceforth, we present a general methodology for learn-
ing the interpretable interaction-based classification models,
with the regularization parameters set by the expert’s intu-
ition. The embedded feature selection enables prospective
identification of key processes related to the phenotype.

3. Materials and Methods

In this section, we briefly summarize the methodol-
ogy we had previously developed. Then, we describe the
parameter-tuning process we used to yield the discoveries.

3.1. Sparse Network-regularized SVM

We employed the approach called Sparse Network-
regularized SVM (SNSVM) we had previously devel-
oped [2]. Our approach is similar to the network-constrained
linear regression [11], but designed for the classification
tasks. By merging all the regularization terms described in
Section 2.2 we define the SNSVM as:

M M
min zw%+)\2|wi|+,82141j(wl'*wj)Qv
i=1 i=1

ijET
(1)

st (wix; +wo)y; > 1,Vi=1,...,N,
(2)

where Constraints 2 ensure all the N data points are sepa-
rated in the space of M features. The first term in Objective 1
is the margin maximization term from the standard SVM.
The second is the sparsity term, discussed in Section 2.2, as
used in [20, 18, 11]. The third term is the interaction term
(see Section 2.2) used by [10, 11, 5]. The constants A and 3,
respectively, define the ratio of sparsity and interconnection
of features employed in the model. The intention is to keep
only a few (sparsity term) meaningfully related (interaction
term) features with reasonable generalization (margin term).

3.2. Model Selection

By increasing A, the model gets sparser as to the num-
ber of nonzero-weight features. Whereas increasing (3, the
model grows larger in a meaningful way, i.e., the model ex-
pansion follows the network topology. E.g., the evolutionary
related genes may be targeted by a common regulatory pro-
cess. Similarly, the genes with interacting proteins are often
co-expressed. If a group of features has already shown a
nonzero-weight in the model, it may be viewed as afflicted
by the unseen phenotype-causing mechanism.
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Fig. 2. An example of ultimately sparse model.

Behold an ultimately sparse model learned under the
configuration with high value of A\ (sparsity) but low value
of 8 (network connectivity). This model, though accurately
describing phenotype, is hardly possible to identify with
some biological process (see Figure 3.2). Each of the genes,
proved with nonzero-weights in resulting model may be an-
notated by several terms referring to distinct biological pro-
cesses. However, by relaxing the sparsity through increasing
the value of 3 we can expand the model in a meaningful
way. The meaningful means in a predefined biological re-
lation such as the protein interactions in our case. The ex-
pected result is that the nonzero-weight genes share signifi-
cant number of annotations with only a few of terms.
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Fig. 3. An example of meaningfully expanded model.

4. Results

By employing the methodology described in Sec-
tion 3.2 on data related to myelodysplastic syndrome [2]
(MDS), we obtained a model (Figure 5) significantly en-
riched in four GO terms. The term RNA splic trans
ester... is related to the alternative RNA splicing.
The term Ribonucl compl sun org refers to the ri-
bonucleotid complex subunit organization. These two terms
can be together explained as relevant to the spliceosomal
mutations in ribosomes. These mutations occur in approx-
imately half of all MDS patients and seem to be highly spe-
cific for this disorder [4].
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The next interesting enriched term is relevant to the
viral process. Surprisingly a hypothesis of MDS triggered
by a virus has been postulated independently once upon a
time [12]. This may be seen as a potentially new discovery
in the domain.

The last term is related to mitochondrial translation
(Mit transl). Even this term has a support in litera-
ture as independently supporting a potentially novel discov-
ery [19, 7], and may be related to the mutations in mitochon-
drial DNA.

5. Conclusion

The main contribution is that these nuggets are relevant
to potentially causal mutations, though extracted from solely
gene expression, i.e. non-mutational data. It suggest that
proper integrating the available data with relevant general
knowledge may unveil nontrivial relations. Certain of these
discoveries are worth for further wet-lab research.

~ )

Resulting model
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